Advertisement

Sedation in ACHD

  • Wolf B. Kratzert
  • Johanna C. Schwarzenberger
Chapter
Part of the Congenital Heart Disease in Adolescents and Adults book series (CHDAA)

Abstract

Over the last decade, focus on appropriate sedation management in the intensive care unit (ICU) is rising. ICU delirium, psychological trauma, and prolonged immobilization have been recognized as major factors impacting the outcome of critically ill patients. Current guidelines incorporate the management of pain, agitation, and delirium with a focus on decreasing sedation-induced adverse events. More specific analgesic and sedation strategies, daily spontaneous awakening and breathing trials, early extubation and mobilization, and measures to decrease ICU delirium are being implemented resulting in improved outcomes. With the constant rise of congenital heart disease (CHD) patients reaching adult age, ICUs and their intensivists are confronted with particular challenges when these patients become critically ill. Unique physiologic and psychosocial aspects often require adjustment in the medical management, including sedation regimens. With an understanding of the interaction between sedatives and the adult congenital heart disease (ACHD) pathophysiology, modern ICU sedation management can be applied to optimize outcomes in this specific patient population. In this chapter, we will discuss current ICU sedatives, specific ACHD pathophysiology, and how these two interact. We will describe modern aspects of critical care sedation and their application to critically ill patients with CHD.

Keywords

ICU Sedation Agitation Delirium ACHD CHD ECMO Opiates Propofol Dexmedetomidine Ketamine Benzodiazepines 

References

  1. 1.
    Barr J, Fraser GL, Puntillo K, Ely EW. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care. 2013;41:263–306.CrossRefGoogle Scholar
  2. 2.
    Fraser GL, Riker RR, Prato S. The frequency and cost of patient-initiated device removal in the ICU. Pharmacotherapy. 2001;21:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Atkins PM, Mion LC, Mendelson W, Palmer RM. Characteristics and outcomes of patients who self-extubate from ventilatory support: a case-control study. Chest. 1997;112:1317–23.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Conti J, Smith D. Haemodynamic responses to extubation after cardiac surgery with and without continued sedation. Br J Anaesth. 1998;80:834–6.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Reade MC, Finfer S. Sedation and delirium in the intensive care unit. N Engl J Med. 2014;370:444–54.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Jakob SM, Ruokonen E, Grounds RM, Sarapohja T. Dexmedetomidine for long-term sedation investigators: dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012;307:1151–60.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Fraser GL, Devlin JW, Worby CP, Alhazzani W, Barr J, Dasta JF, et al. Benzodiazepine versus nonbenzodiazepine-based sedation for mechanically ventilated, critically ill adults: a systematic review and meta-analysis of randomized trials. Crit Care Med. 2013;41(9 Suppl 1):S30–8.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O’Neal PV, Keane KA, et al. The Richmond agitation-sedation scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166(10):1338–44.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Ely EW, Truman B, Shintani A, Thomason JWW, Wheeler AP, Gordon S, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond agitation-sedation scale (RASS). JAMA. 2003;289(22):2983–91.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Riker RR, Picard JT, Fraser GL. Prospective evaluation of the sedation-agitation scale for adult critically ill patients. Crit Care Med. 1999;27:1325–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Ely EW, Inouye SK, Bernard GR, Gordon S, Francis J, May L, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA. 2001;286(21):2703–10.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Brummel NE, Vasilevskis EE, Han JH. Implementing delirium screening in the intensive care unit: secrets to success. Crit Care. 2013;41:2196–208.CrossRefGoogle Scholar
  13. 13.
    Brook AD, Ahrens TS, Schaiff R, Prentice D, Sherman G, Shannon W, et al. Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med. 1999;27(12):2609–15.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Shehabi Y, Bellomo R, Reade MC, Bailey M, Bass F, Howe B, et al. Early goal-directed sedation versus standard sedation in mechanically ventilated critically ill patients: a pilot study. Crit Care Med. 2013;41(8):1983–91.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):1471–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Girard TD, Kress JP, Fuchs BD, Thomason J. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (awakening and breathing controlled trial): a randomised controlled trial. Lancet. 2008;371(9607):126–34.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Morris PE. Moving our critically ill patients: mobility barriers and benefits. Crit Care Clin. 2007;23(1):1–20.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hermans G, Van Mechelen H, Clerckx B, Vanhullebusch T, Mesotten D, Wilmer A, et al. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis. Am J Respir Crit Care Med. 2014;190(4):410–20.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med. 2014;370(17):1626–35.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373(9678):1874–82.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Marra A, Ely EW, Pandharipande PP, Patel MB. The ABCDEF bundle in critical care. Crit Care Clin. 2017;33:225–43.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lin S-M, Liu C-Y, Wang C-H, Lin H-C, Huang C-D, Huang P-Y, et al. The impact of delirium on the survival of mechanically ventilated patients. Crit Care Med. 2004;32(11):2254–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Salluh JIF, Wang H, Schneider EB, Nagaraja N, Yenokyan G, Damluji A, et al. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ. 2015;350:h2538.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ely EW, Shintani A, Truman B, Speroff T, Gordon SM. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291:1753–62.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Pandharipande PP, Girard TD. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369:1306–16.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pandharipande P, Shintani A. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104:21–6.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Pandharipande P, Girard TD, Sanders RD. Comparison of sedation with dexmedetomidine versus lorazepam in septic ICU patients. Crit Care. 2008;12:P275.PubMedCentralCrossRefGoogle Scholar
  28. 28.
    Riker RR, Shehabi Y, Bokesch PM, Ceraso D, SEDCOM (Safety and Efficacy of Dexmedetomidine Compared with Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301:489–99.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Maldonado JR, Wysong A, van der Starre PJA, Block T, Miller C, Reitz BA. Dexmedetomidine and the reduction of postoperative delirium after cardiac surgery. Psychosomatics. 2009;50(3):206–17.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Mo Y, Zimmermann AE. Role of dexmedetomidine for the prevention and treatment of delirium in intensive care unit patients. Ann Pharmacother. 2013;47:869–76.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Djaiani G, Silverton N, Fedorko L. Dexmedetomidine versus Propofol sedation reduces delirium after cardiac surgery: a randomized controlled trial. Anesthesiology. 2016;124:362.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Su X, Meng Z-T, Wu X-H, Cui F, Li H-L, Wang D-X, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet. 2016;388(10054):1893–902.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Devlin JW, Roberts R, Fong JJ. Efficacy and safety of quetiapine for delirium in the ICU: a randomized, double-blind, placebo-controlled pilot study. Crit Care Med. 2010;38:419–27.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Devlin JW, Fraser GL, Ely EW, Kress JP. Pharmacological management of sedation and delirium in mechanically ventilated ICU patients: remaining evidence gaps and controversies. Semin Respir Crit Care Med. 2013;34:201–15.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Trogrlić Z, van der Jagt M, Bakker J, Balas MC, Ely EW, van der Voort PHJ, et al. A systematic review of implementation strategies for assessment, prevention, and management of ICU delirium and their effect on clinical outcomes. Crit Care. 2015;19(1):157.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ehlenbach WJ, Hough CL, Crane PK, Haneuse S. Association between acute care and critical illness hospitalization and cognitive function in older adults. JAMA. 2010;303:763–70.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jackson JC, Pandharipande PP, Girard TD. Depression, post-traumatic stress disorder, and functional disability in survivors of critical illness in the BRAIN-ICU study: a longitudinal cohort study. Lancet Respir Med. 2014;2:369–79.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Patel MB, Jackson JC, Morandi A, Girard TD, Hughes CG, Thompson JL, et al. Incidence and risk factors for intensive care unit-related post-traumatic stress disorder in veterans and civilians. Am J Respir Crit Care Med. 2016;193(12):1373–81.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Girard TD, Shintani AK, Jackson JC, Gordon SM, Pun BT, Henderson MS, et al. Risk factors for post-traumatic stress disorder symptoms following critical illness requiring mechanical ventilation: a prospective cohort study. Crit Care. 2007;11(1):R28.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ramnarain D, Gnirrip I, Schapendonk W. Post-traumatic stress disorder after ICU discharge: results of a post-ICU aftercare program. Crit Care. 2015;19:P553.PubMedCentralCrossRefGoogle Scholar
  41. 41.
    Svenningsen H. Associations between sedation, delirium and post-traumatic stress disorder and their impact on quality of life and memories following discharge from an intensive care unit. Dan Med J. 2013;60(4):B4630.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Hohlfelder B, Szumita PM, Lagambina S, Weinhouse G, Degrado JR. Safety of Propofol for oxygenator exchange in extracorporeal membrane oxygenation. ASAIO J. 2017;63(2):179–84.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Shekar K, Roberts JA, Mullany DV, Corley A, Fisquet S, Bull TN, et al. Increased sedation requirements in patients receiving extracorporeal membrane oxygenation for respiratory and cardiorespiratory failure. Anaesth Intensive Care. 2012;40(4):648–55.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Lemaitre F, Hasni N, Leprince P, Corvol E. Propofol, midazolam, vancomycin and cyclosporine therapeutic drug monitoring in extracorporeal membrane oxygenation circuits primed with whole human blood. Crit Care. 2015;19:40.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Dzierba AL, Abrams D, Brodie D. Medicating patients during extracorporeal membrane oxygenation: the evidence is building. Crit Care. 2017;21:66.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Williams RG, Pearson GD, Barst RJ, Child JS, del Nido P, Gersony WM, et al. Report of the National Heart, Lung, and Blood Institute Working Group on research in adult congenital heart disease. J Am Coll Cardiol. 2006;47:701–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Price S, Jaggar SI, Jordan S, Trenfield S, Khan M, Sethia B, et al. Adult congenital heart disease: intensive care management and outcome prediction. Intensive Care Med. 2007;33(4):652–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Allan CK. Intensive care of the adult patient with congenital heart disease. Prog Cardiovasc Dis. 2011;53:274–80.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Cohen SB, Ginde S, Bartz PJ. Extracardiac complications in adults with congenital heart disease. Congenital Heart Dis. 2013;8:370–80.Google Scholar
  50. 50.
    Jerrell JM, Shuler CO, Tripathi A, Black GB, Park Y-MM. Long-term neurodevelopmental outcomes in children and adolescents with congenital heart disease. Prim Care Companion CNS Disord. 2015;17(5).  https://doi.org/10.4088/PCC.15m01842.
  51. 51.
    Marino BS, Lipkin PH, Newburger JW, Peacock G, Gerdes M, Gaynor JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 2012;126:1143–72.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Bromberg JI, Beasley PJ, D’Angelo EJ, Landzberg M, DeMaso DR. Depression and anxiety in adults with congenital heart disease: a pilot study. Heart Lung. 2003;32(2):105–10.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kovacs AH, Saidi AS, Kuhl EA, Sears SF, Silversides C, Harrison JL, et al. Depression and anxiety in adult congenital heart disease: predictors and prevalence. Int J Cardiol. 2009;137(2):158–64.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Bhatt AB, Foster E, Kuehl K, Alpert J, Brabeck S. Congenital heart disease in the older adult. Circulation. 2015;131:1884–931.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Jackowski AP, Rando K, Maria de Araújo C, Del Cole CG, Silva I, Tavares de Lacerda AL. Brain abnormalities in Williams syndrome: a review of structural and functional magnetic resonance imaging findings. Eur J Paediatr Neurol. 2009;13(4):305–16.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Gaeta SA, Ward C, Krasuski RA. Extra-cardiac manifestations of adult congenital heart disease. Trends Cardiovasc Med. 2016;26(7):627–36.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Jensen AS, Idorn L, Thomsen C, Recke von der P, Mortensen J, Sørensen KE, et al. Prevalence of cerebral and pulmonary thrombosis in patients with cyanotic congenital heart disease. Br Heart J. 2015;101(19):1540–6.CrossRefGoogle Scholar
  58. 58.
    Leisner MZ, Madsen NL, Ostergaard JR, Woo JG, Marino BS, Olsen MS. Congenital heart defects and risk of epilepsy: a population-based cohort study. Circulation. 2016;134(21):1689–91.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Padula MA, Ades AM. Neurodevelopmental implications of congenital heart disease. NeoReviews. 2006;7:e363.CrossRefGoogle Scholar
  60. 60.
    Martinez-Biarge M, Jowett VC, Cowan FM. Neurodevelopmental outcome in children with congenital heart disease. Semin Fetal Neonatal Med. 2013;18:279–85.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Bellinger DC, Jonas RA, Rappaport LA, Wypij D, Wernovsky G, Kuban KC, et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med. 1995;332(9):549–55.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Healy F, Hanna BD, Zinman R. Pulmonary complications of congenital heart disease. Paediatr Respir Rev. 2012;13:10–5.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Alonso-Gonzalez R, Borgia F, Diller G-P, Inuzuka R, Kempny A, Martinez-Naharro A, et al. Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival. Circulation. 2013;127(8):882–90.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sun XG, Hansen JE, Oudiz RJ, Wasserman K. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation. 2001;104:429–35.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Ingle L, Sloan R, Carroll S, Goode K, Cleland JG, Clark AL. Abnormalities of the ventilatory equivalent for carbon dioxide in patients with chronic heart failure. Pulm Med. 2012;2012(12):589164–6.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Sietsema KE, Cooper DM, Perloff JK, Rosove MH, Child JS, Canobbio MM, et al. Dynamics of oxygen uptake during exercise in adults with cyanotic congenital heart disease. Circulation. 1986;73(6):1137–44.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Dimopoulos K, Okonko DO, Diller G-P, Broberg CS, Salukhe TV, Babu-Narayan SV, et al. Abnormal ventilatory response to exercise in adults with congenital heart disease relates to cyanosis and predicts survival. Circulation. 2006;113(24):2796–802.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Khan AM, Paridon SM, Kim YY. Cardiopulmonary exercise testing in adults with congenital heart disease. Expert Rev Cardiovasc Ther. 2014;12(7):863–72.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Fahed AC, Roberts AE, Mital S, Lakdawala NK. Heart failure in congenital heart disease: a confluence of acquired and congenital. Heart Fail Clin. 2014;10(1):219–27.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Diller G-P, Kempny A, Alonso-Gonzalez R, Swan L, Uebing A, Li W, et al. Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a large tertiary Centre. Circulation. 2015;132(22):2118–25.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Engelings CC, Helm PC, Abdul-Khaliq H, Asfour B, Bauer UMM, Baumgartner H, et al. Cause of death in adults with congenital heart disease—an analysis of the German National Register for congenital heart defects. Int J Cardiol. 2016;211:31–6.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Moussa NB, Karsenty C, Pontnau F, Malekzadeh-Milani S, Boudjemline Y, Legendre A, et al. Characteristics and outcomes of heart failure-related hospitalization in adults with congenital heart disease. Arch Cardiovasc Dis. 2017;110:283–91.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Triedman JK. Arrhythmias in adults with congenital heart disease. Heart. 2002;87:383–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Walsh EP, Cecchin F. Arrhythmias in adult patients with congenital heart disease. Circulation. 2007;115:534–45.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Norozi K, Wessel A, Alpers V, Arnhold JO, Binder L, Geyer S, et al. Chronotropic incompetence in adolescents and adults with congenital heart disease after cardiac surgery. J Card Fail. 2007;13(4):263–8.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Diller GP, Dimopoulos K, Okonko D, Uebing A. Heart rate response during exercise predicts survival in adults with congenital heart disease. J Am Coll Cardiol. 2006;48:1250–6.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Witte KK, Clark AL. Chronotropic incompetence in heart failure. J Am Coll Cardiol. 2006;48:595.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    LeRiger M, Naguib A, Gallantowicz M, Tobias JD. Dexmedetomidine controls junctional ectopic tachycardia during tetralogy of Fallot repair in an infant. Ann Card Anaesth. 2012;15(3):224–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Geng J, Qian J, Cheng H, Ji F, Liu H. The influence of perioperative dexmedetomidine on patients undergoing cardiac surgery: a meta-analysis. PLoS One. 2016;11(4):e0152829.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Liu X, Zhang K, Wang W, Xie G, Fang X. Dexmedetomidine sedation reduces atrial fibrillation after cardiac surgery compared to propofol: a randomized controlled trial. Crit Care. 2016;20(1):298.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Asrani SK, Asrani NS, Freese DK, Phillips SD. Congenital heart disease and the liver. Hepatology. 2012;56:1160–9.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hilscher M, Sanchez W. Congestive hepatopathy. Clin Liver Dis. 2016;8:68.CrossRefGoogle Scholar
  83. 83.
    Kiesewetter CH, Sheron N, Vettukattill JJ, Hacking N, Stedman B, Millward-Sadler H, et al. Hepatic changes in the failing Fontan circulation. Br Heart J. 2007;93(5):579–84.CrossRefGoogle Scholar
  84. 84.
    Wu FM, Ukomadu C, Odze RD. Liver disease in the patient with Fontan circulation. Congenit Heart Dis. 2011;6:190–201.PubMedCrossRefGoogle Scholar
  85. 85.
    Harbrecht BG, Zenati MS, Doyle HR, McMichael J, Townsend RN, Clancy KD, et al. Hepatic dysfunction increases length of stay and risk of death after injury. J Trauma. 2002;53(3):517–23.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Kramer L, Jordan B, Druml W, Bauer P. Incidence and prognosis of early hepatic dysfunction in critically ill patients—a prospective multicenter study. Crit Care. 2007;35:1099–104.CrossRefGoogle Scholar
  87. 87.
    Dimopoulos K, Diller G-P, Koltsida E, Pijuan-Domenech A, Papadopoulou SA, Babu-Narayan SV, et al. Prevalence, predictors, and prognostic value of renal dysfunction in adults with congenital heart disease. Circulation. 2008;117(18):2320–8.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Norozi K, Oechslin E. Renal dysfunction in adults with congenital heart defects. Prog Pediatr Cardiol. 2016;41:51–7.CrossRefGoogle Scholar
  89. 89.
    Bock JS, Gottlieb SS. Cardiorenal syndrome. Circulation. 2010;121:2592–600.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Giallourakis CC, Rosenberg PM, Friedman LS. The liver in heart failure. Clin Liver Dis. 2002;6:947–67.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Rodighiero V. Effects of liver disease on pharmacokinetics. An update. Clin Pharmacokinet. 1999;37(5):399–431.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Verbeeck RK. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol. 2008;64(12):1147–61.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Carrero JJ, Chmielewski M, Axelsson J, Snaedal S, Heimbürger O, Bárány P, et al. Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients. Clin Nutr. 2008;27(4):557–64.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Rehn TA, Munkvik M, Lunde PK, Sjaastad I, Sejersted OM. Intrinsic skeletal muscle alterations in chronic heart failure patients: a disease-specific myopathy or a result of deconditioning? Heart Fail Rev. 2012;17(3):421–36.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Gea J, Casadevall C, Pascual S. Clinical management of chronic obstructive pulmonary disease patients with muscle dysfunction. J Thorac Dis. 2016;8:3379–400.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Greutmann M, Le TL, Tobler D, Biaggi P, Oechslin EN, Silversides CK, et al. Generalised muscle weakness in young adults with congenital heart disease. Br Heart J. 2011;97(14):1164–8.CrossRefGoogle Scholar
  97. 97.
    Haehling v S, Ebner N, Santos Dos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol. 2017;11:177.Google Scholar
  98. 98.
    Cordina R, O’Meagher S, Gould H, Rae C, Kemp G, Pasco JA, et al. Skeletal muscle abnormalities and exercise capacity in adults with a Fontan circulation. Br Heart J. 2013;99(20):1530–4.CrossRefGoogle Scholar
  99. 99.
    Young-McCaughan S, Miaskowski C. Definition of and mechanism for opioid-induced sedation. Pain Manag Nurs. 2001;2(3):84–97.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Muellejans B, López A, Cross MH. Remifentanil versus fentanyl for analgesia based sedation to provide patient comfort in the intensive care unit: a randomized, double-blind controlled trial [ISRCTN43755713]. Crit Care. 2004;8:R1–R11.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Wilhelm W, Kreuer S. The place for short-acting opioids: special emphasis on remifentanil. Crit Care. 2008;12(Suppl 3):S5.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Barr J, Zomorodi K. A double-blind, randomized comparison of iv lorazepam versus midazolam for sedation of ICU patients via a pharmacologic model. Anesthesiology. 2001;95:286–98.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Bauer TM, Ritz R, Haberthür C, Haefeli WE. Prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet. 1995;346:145–7.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Swart EL, Zuideveld KP, De Jongh J. Comparative population pharmacokinetics of lorazepam and midazolam during long-term continuous infusion in critically ill patients. Br J Clin Pharmacol. 2004;57:135–45.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Arroliga AC, Shehab N, McCarthy K, Gonzales JP. Relationship of continuous infusion lorazepam to serum propylene glycol concentration in critically ill adults. Crit Care Med. 2004;32(8):1709–14.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Greenblatt DJ, Abernethy DR, Locniskar A, Harmatz JS, Limjuco RA, Shader RI. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology. 1984;61(1):27–35.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kanto J, Gepts E. Pharmacokinetic implications for the clinical use of propofol. Clin Pharmacokinet. 1989;17(5):308–26.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Krajčová A, Waldauf P, Anděl M, Duška F. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care. 2015;19(1):398.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ji F, Li Z, Nguyen H, Young N, Shi P, Fleming N, et al. Perioperative dexmedetomidine improves outcomes of cardiac surgery. Circulation. 2013;127(15):1576–84.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Goyal R, Singh S, Bangi A, Singh SK. Case series: dexmedetomidine and ketamine for anesthesia in patients with uncorrected congenital cyanotic heart disease presenting for non-cardiac surgery. J Anaesthesiol Clin Pharmacol. 2013;29(4):543–6.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Holliday SF, Kane-Gill SL, Empey PE, Buckley MS, Smithburger PL. Interpatient variability in dexmedetomidine response: a survey of the literature. ScientificWorldJournal. 2014;2014(1):805013–2.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Smithburger PL, Smith RB, Kane-Gill SL. Identification of patient predictors for dexmedetomidine effectiveness for ICU sedation. Am J Crit Care. 2014;23:160–5.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Gertler R, Brown HC, Mitchell DH. Dexmedetomidine: a novel sedative-analgesic agent. Proc (Bayl Univ Med Cent). 2001;14(1):13–21.CrossRefGoogle Scholar
  114. 114.
    Anand VG. Sedation in intensive care unit: is dexmedetomidine the best choice? Int J Crit Illn Inj Sci. 2012;2(1):3–5.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kurdi MS, Theerth KA, Deva RS. Ketamine: current applications in anesthesia, pain, and critical care. Anesth Essays Res. 2014;8(3):283–90.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Benken ST, Goncharenko A. The future of intensive care unit sedation: a report of continuous infusion ketamine as an alternative sedative agent. J Pharm Pract. 2017;30:576–81.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Umunna B-P, Tekwani K, Barounis D, Kettaneh N, Kulstad E. Ketamine for continuous sedation of mechanically ventilated patients. J Emerg Trauma Shock. 2015;8(1):11–5.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Wolf B. Kratzert
    • 1
  • Johanna C. Schwarzenberger
    • 1
  1. 1.Department of AnesthesiologyRonald Reagan UCLA Medical CenterLos AngelesUSA

Personalised recommendations