Cardiac Rehabilitation in Adults with Congenital Heart Disease

  • John Willner
  • Robert Haennel
  • Ailar Ramadi
  • Isabelle Vonder Muhll
  • Andrew MackieEmail author
Part of the Congenital Heart Disease in Adolescents and Adults book series (CHDAA)


Adults with congenital heart disease represent a small but growing population of patients presenting for cardiac rehabilitation. An approach to clinical assessment of these patients prior to commencing cardiac rehabilitation is discussed. Methods to evaluate exercise capacity are reviewed. Aerobic capacity is significantly reduced in adult congenital heart disease patients and is related to prognosis. Exercise prescription based on the FITT principle is discussed. Benefits of moderate continuous aerobic training versus high-intensity interval training are compared. Testing muscular strength and endurance are described, and resistance training in congenital heart disease is discussed. Evidence for exercise training on improving exercise capacity in congenital heart disease is reviewed. Spontaneous physical activity is reduced, with most adult congenital patients not achieving the World Health Organization’s (W.H.O.) recommendations for daily physical activity and correspondingly having excessive sedentary time. Comprehensive cardiac rehabilitation programs should include formal exercise training as well as physical activity counseling to improve exercise capacity, reduce the risk of coronary artery disease, and ultimately reduce morbidity and mortality in patients with congenital heart disease.


Adult with congenital heart disease Oxygen consumption Physical activity Tetralogy of Fallot Transposition of the great arteries Moderate continuous aerobic training High-intensity interval training Resistance training Cardiac rehabilitation Aerobic capacity Exercise training Sedentary Fontan 


  1. 1.
    Pinto NM, Marino BS, Wernovsky G, de Ferranti SD, Walsh AZ, Laronde M, et al. Obesity is a common comorbidity in children with congenital and acquired heart disease. Pediatrics. 2007;120(5):e1157–e64.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lunt D, Briffa T, Briffa NK, Ramsay J. Physical activity levels of adolescents with congenital heart disease. Aust J Physiother. 2003;49(1):43–50.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Reybrouck T, Mertens L. Physical performance and physical activity in grown-up congenital heart disease. Eur J Cardiovasc Prev Rehabil. 2005;12(5):498–502.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Duppen N, Etnel JR, Spaans L, Takken T, van den Berg-Emons RJ, Boersma E, et al. Does exercise training improve cardiopulmonary fitness and daily physical activity in children and young adults with corrected tetralogy of Fallot or Fontan circulation? A randomized controlled trial. Am Heart J. 2015;170(3):606–14.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Gatzoulis M, Balaji S, Webber S, Siu S, Hokanson J, Poile C, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet. 2000;356:975–81.CrossRefGoogle Scholar
  6. 6.
    Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N, et al. ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31(23):2915–57.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Thompson PD, Arena R, Riebe D, Pescatello LS. ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription. Curr Sports Med Rep. 2013;12(4):215–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2017.Google Scholar
  9. 9.
    Rhodes J, Tikkanen AU, Jenkins KJ. Exercise testing and training in children with congenital heart disease. Circulation. 2010;122(19):1957–67.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Buber J, Rhodes J. Exercise physiology and testing in adult patients with congenital heart disease. Heart Fail Clin. 2014;10(1):23–33.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Diller G-P, Dimopoulos K, Okonko D, Uebing A, Broberg CS, Babu-Narayan S, et al. Heart rate response during exercise predicts survival in adults with congenital heart disease. J Am Coll Cardiol. 2006;48(6):1250–6.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kempny A, Dimopoulos K, Uebing A, Moceri P, Swan L, Gatzoulis MA, et al. Reference values for exercise limitations among adults with congenital heart disease. Relation to activities of daily life—single centre experience and review of published data. Eur Heart J. 2011;33(11):1386–96.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Inuzuka R, Diller G-P, Borgia F, Benson L, Tay EL, Alonso-Gonzalez R, et al. Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation. 2012;125(2):250–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, et al. Clinician’s guide to cardiopulmonary exercise testing in adults. Circulation. 2010;122(2):191–225.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Dempsey JA, Wagner PD. Exercise-induced arterial hypoxemia. J Appl Physiol. 1999;87(6):1997–2006.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ross R, Blair SN, Arena R, Church TS, Després J-P, Franklin BA, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation. 2016;134:e653.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Diller G, Dimopoulus K, Okonko D, Li W, Babu-Narayan S, Broberg C, et al. Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation. 2005;112:828–35.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Giardini A, Specchia S, Tacy TA, Coutsoumbas G, Gargiulo G, Donti A, et al. Usefulness of cardiopulmonary exercise to predict long-term prognosis in adults with repaired tetralogy of Fallot. Am J Cardiol. 2007;99(10):1462–7.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Takken T, Giardini A, Reybrouck T, Gewillig M, Hövels-Gürich H, Longmuir P, et al. Recommendations for physical activity, recreation sport, and exercise training in paediatric patients with congenital heart disease: a report from the Exercise, Basic & Translational Research Section of the European Association of Cardiovascular Prevention and Rehabilitation, the European Congenital Heart and Lung Exercise Group, and the Association for European Paediatric Cardiology. Eur J Prev Cardiol. 2012;19(5):1034–65.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Rhodes J. Serial exercise testing in patients with congenital heart disease. J Cardiol Ther. 2015;2(1):250–4.Google Scholar
  21. 21.
    Duppen N, Takken T, Hopman M, At H, Dulfer K, Utens E, et al. Systemic review of the effects of physical exercise training programmes in children and young adults with congenital heart disease. Int J Cardiol. 2013;168:1779–87.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Buys R, Cornelissen V, Van De Bruaene A, Stevens A, Coeckelberghs E, Onkelinx S, et al. Measures of exercise capacity in adults with congenital heart disease. Int J Cardiol. 2011;153(1):26–30.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Johnson JT, Yetman AT. Cardiopulmonary exercise testing in adults with congenital heart disease. Prog Pediatr Cardiol. 2012;34(1):47–52.CrossRefGoogle Scholar
  24. 24.
    Müller J, Böhm B, Semsch S, Oberhoffer R, Hess J, Hager A. Currently, children with congenital heart disease are not limited in their submaximal exercise performance. Eur J Cardiothorac Surg. 2013;43(6):1096–100.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–7.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Wasserman K. The anaerobic threshold measurement to evaluate exercise performance 1, 2. Am Rev Respir Dis. 1984;129(2P2):S35–40.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Mezzani A, Hamm LF, Jones AM, McBride PE, Moholdt T, Stone JA, et al. Aerobic exercise intensity assessment and prescription in cardiac rehabilitation: a joint position statement of the European Association for Cardiovascular Prevention and Rehabilitation, the American Association of Cardiovascular and Pulmonary Rehabilitation and the Canadian Association of Cardiac Rehabilitation. Eur J Prev Cardiol. 2013;20(3):442–67.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Dimopoulos K, Okonko DO, Diller GP, Broberg CS, Salukhe TV, Babu-Narayan SV, et al. Abnormal ventilatory response to exercise in adults with congenital heart disease relates to cyanosis and predicts survival. Circulation. 2006;113(24):2796–802.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Arena R, Myers J, Williams MA, Gulati M, Kligfield P, Balady GJ, et al. Assessment of functional capacity in clinical and research settings: a scientific statement from the American Heart Association Committee on Exercise, Rehabilitation, and Prevention of the Council on Clinical Cardiology and the Council on Cardiovascular Nursing. Circulation. 2007;116(3):329–43.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Clark AL, Gatzoulis MA, Redington AN. Ventilatory responses to exercise in adults after repair of tetralogy of Fallot. Br Heart J. 1995;73(5):445–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and training a scientific statement from the American Heart Association. Circulation. 2013;128(8):873–934.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Sutton NJ, Peng L, Lock JE, Lang P, Marx GR, Curran TJ, O’Neill JA, Picard ST, Rhodes J. Effect of pulmonary artery angioplasty on exercise function after repair of tetralogy of Fallot. Am Heart J. 2008;155(1):182–6.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Moalla W, Gauthier R, Maingourd Y, Ahmaidi S. Six-minute walking test to assess exercise tolerance and cardiorespiratory responses during training program in children with congenital heart disease. Int J Sports Med. 2005;26(9):756–62.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    American Thoracic Society. ATS statement: guidelines for the six minute walk test. Am J Crit Care Med. 2002;166:111–7.CrossRefGoogle Scholar
  35. 35.
    Rasekaba T, Lee A, Naughton M, Williams T, Holland A. The six-minute walk test: a useful metric for the cardiopulmonary patient. Intern Med J. 2009;39(8):495–501.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2007;116(5):572–84.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Van De Bruaene A, Claessen G, La Gerche A, Kung E, Marsden A, De Meester P, et al. Effect of respiration on cardiac filling at rest and during exercise in Fontan patients: a clinical and computational modeling study. Int J Cardiol Heart Vasc. 2015;9:100–8.Google Scholar
  38. 38.
    Kim PS, Mayhew JL, Peterson DF. A modified YMCA bench press test as a predictor of 1 repetition maximum bench press strength. J Strength Cond Res. 2002;16(3):440–5.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Fredriksen PM, Veldtman G, Hechter S, Therrien J, Chen A, Warsi MA, et al. Aerobic capacity in adults with various congenital heart diseases. Am J Cardiol. 2001;87(3):310–4.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Foster E, Graham TP Jr, Driscoll DJ, Reid GJ, Reiss JG, Russell IA, et al. Task force 2: special health care needs of adults with congenital heart disease. J Am Coll Cardiol. 2001;37(5):1176–83.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Deanfield J, Thaulow E, Warnes C, Webb G, Kolbel F, Hoffman A, et al. Management of grown up congenital heart disease. Eur Heart J. 2003;24(11):1035–84.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Reybrouck T, Bisschop A, Dumoulin M, van der Hauwaert LG. Cardiorespiratory exercise capacity after surgical closure of atrial septal defect is influenced by the age at surgery. Am Heart J. 1991;122(4 Pt 1):1073–8.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Winter MM, van der Bom T, de Vries LCS, Balducci A, Bouma BJ, Pieper PG, et al. Exercise training improves exercise capacity in adult patients with a systemic right ventricle: a randomized clinical trial. Eur Heart J. 2012;33(11):1378–85.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Driscoll DJ, Staats BA, Heise CT, Rice MJ, Puga FJ, Danielson GK, et al. Functional single ventricle: cardiorespiratory response to exercise. J Am Coll Cardiol. 1984;4(2):337–42.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Driscoll DJ, Durongpisitkul K. Exercise testing after the Fontan operation. Pediatr Cardiol. 1999;20(1):57–9; discussion 60.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Sietsema KE, Cooper D, Perloff JK, Rosove M, Child J, Canobbio M, et al. Dynamics of oxygen uptake during exercise in adults with cyanotic congenital heart disease. Circulation. 1986;73(6):1137–44.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Sterrett LE, Ebenroth ES, Query C, Ho J, Montgomery GS, Hurwitz RA, et al. Why exercise capacity does not improve after pulmonary valve replacement. Pediatr Cardiol. 2014;35(8):1395–402.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Greutmann M, Le TL, Tobler D, Biaggi P, Oechslin EN, Silversides CK, et al. Generalised muscle weakness in young adults with congenital heart disease. Heart. 2011;97(14):1164–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Giardini A, Specchia S, Coutsoumbas G, Donti A, Formigari R, Fattori R, et al. Impact of pulmonary regurgitation and right ventricular dysfunction on oxygen uptake recovery kinetics in repaired tetralogy of Fallot. Eur J Heart Fail. 2006;8(7):736–43.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mercer-Rosa L, Ingall E, Zhang X, McBride M, Kawut S, Fogel M, et al. The impact of pulmonary insufficiency on the right ventricle: a comparison of isolated valvar pulmonary stenosis and tetralogy of Fallot. Pediatr Cardiol. 2015;36(4):796–801.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Sabate Rotes A, Johnson JN, Burkhart HM, Eidem BW, Allison TG, Driscoll DJ. Cardiorespiratory response to exercise before and after pulmonary valve replacement in patients with repaired tetralogy of Fallot: a retrospective study and systematic review of the literature. Congenit Heart Dis. 2015;10(3):263–70.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Derrick GP, Narang I, White PA, Kelleher A, Bush A, Penny DJ, et al. Failure of stroke volume augmentation during exercise and dobutamine stress is unrelated to load-independent indexes of right ventricular performance after the Mustard operation. Circulation. 2000;102(Suppl 3):Iii-154–9.Google Scholar
  53. 53.
    Graham TP Jr, Driscoll DJ, Gersony WM, Newburger JW, Rocchini A, Towbin JA. Task force 2: congenital heart disease. J Am Coll Cardiol. 2005;45(8):1326–33.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Driscoll DJ, Danielson GK, Puga FJ, Schaff HV, Heise CT, Staats BA. Exercise tolerance and cardiorespiratory response to exercise after the Fontan operation for tricuspid atresia or functional single ventricle. J Am Coll Cardiol. 1986;7(5):1087–94.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Takken T, Tacken MH, Blank AC, Hulzebos EH, Strengers JL, Helders PJ. Exercise limitation in patients with Fontan circulation: a review. J Cardiovasc Med (Hagerstown). 2007;8(10):775–81.CrossRefGoogle Scholar
  56. 56.
    Paridon SM, Mitchell PD, Colan SD, Williams RV, Blaufox A, Li JS, et al. A cross-sectional study of exercise performance during the first 2 decades of life after the Fontan operation. J Am Coll Cardiol. 2008;52(2):99–107.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Cordina RL, O'Meagher S, Karmali A, Rae CL, Liess C, Kemp GJ, et al. Resistance training improves cardiac output, exercise capacity and tolerance to positive airway pressure in Fontan physiology. Int J Cardiol. 2013;168(2):780–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    McCall R, Humphrey R. Exercise training in a young adult late after a fontan procedure to repair single ventricle physiology. J Cardpulm Rehabil. 2001;21(4):227–30.CrossRefGoogle Scholar
  59. 59.
    Minamisawa S, Nakazawa M, Momma K, Imai Y, Satomi G. Effect of aerobic training on exercise performance in patients after the Fontan operation. Am J Cardiol. 2001;88(6):695–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Moalla W, Maingourd Y, Gauthier R, Cahalin LP, Tabka Z, Ahmaidi S. Effect of exercise training on respiratory muscle oxygenation in children with congenital heart disease. Eur J Cardiovasc Prev Rehabil. 2006;13(4):604–11.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Opocher F, Varnier M, Sanders SP, Tosoni A, Zaccaria M, Stellin G, et al. Effects of aerobic exercise training in children after the Fontan operation. Am J Cardiol. 2005;95(1):150–2.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Budts W, Börjesson M, Chessa M, van Buuren F, Trindade PT, Corrado D, et al. Physical activity in adolescents and adults with congenital heart defects: individualized exercise prescription. Eur Heart J. 2013;34(47):3669–74.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Scherr J, Wolfarth B, Christle JW, Pressler A, Wagenpfeil S, Halle M. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur J Appl Physiol. 2013;113(1):147–55.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Tomassoni TL, Galioto P, Vaccaro P, Vaccaro J. Effects of exercise training on exercise tolerance and cardiac output in children after repair of congenital heart disease. Sports Train Med Rehab. 1990;2:57–62.CrossRefGoogle Scholar
  65. 65.
    Tomassoni TL. Role of exercise in the management of cardiovascular disease in children and youth. Med Sci Sports Exerc. 1996;28(4):406–13.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Rhodes J, Curran TJ, Camil L, Rabideau N, Fulton DR, Gauthier NS, et al. Impact of cardiac rehabilitation on the exercise function of children with serious congenital heart disease. Pediatrics. 2005;116(6):1339–45.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Bradley LM, Galioto FM Jr, Vaccaro P, Hansen DA, Vaccaro J. Effect of intense aerobic training on exercise performance in children after surgical repair of tetralogy of Fallot or complete transposition of the great arteries. Am J Cardiol. 1985;56(12):816–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Calzolari A, Turchetta A, Biondi G, Drago F, De Ranieri C, Gagliardi G, et al. Rehabilitation of children after total correction of tetralogy of Fallot. Int J Cardiol. 1990;28(2):151–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Galioto F, Romassoni T. Cardiac rehabilitation for children with heart disease. Med Exerc Nutr Health. 1992;1:272–80.Google Scholar
  70. 70.
    Galioto F, Tomassoni T. Exercise rehabilitation in congenital heart disease. Prog Pediatr Cardiol. 1993;2(3):50–4.CrossRefGoogle Scholar
  71. 71.
    Guiraud T, Nigam A, Gremeaux V, Meyer P, Juneau M, Bosquet L. High-intensity interval training in cardiac rehabilitation. Sports Med. 2012;42(7):587–605.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Astorino TA, Allen RP, Roberson DW, Jurancich M. Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. J Strength Condit Res. 2012;26(1):138–45.CrossRefGoogle Scholar
  73. 73.
    Beauchamp MK, Nonoyama M, Goldstein RS, Hill K, Dolmage TE, Mathur S, et al. Interval versus continuous training in individuals with chronic obstructive pulmonary disease—a systematic review. Thorax. 2010;65(2):157–64.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Meyer K, Samek L, Schwaibold M, Westbrook S, Hajric R, Beneke R, et al. Interval training in patients with severe chronic heart failure: analysis and recommendations for exercise procedures. Med Sci Sports Exerc. 1997;29(3):306–12.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Moholdt T, Aamot IL, Granoien I, Gjerde L, Myklebust G, Walderhaug L, et al. Long-term follow-up after cardiac rehabilitation: a randomized study of usual care exercise training versus aerobic interval training after myocardial infarction. Int J Cardiol. 2011;152(3):388–90.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Elliott AD, Rajopadhyaya K, Bentley DJ, Beltrame JF, Aromataris EC. Interval training versus continuous exercise in patients with coronary artery disease: a meta-analysis. Heart Lung Circ. 2015;24(2):149–57.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    World Health Organization. Global recommendations on physical activity for health. Geneva: World Health Organization; 2010.Google Scholar
  79. 79.
    Kiilavuori K, Sovijärvi A, Näveri H, Ikonen T, Leinonen H. Effect of physical training on exercise capacity and gas exchange in patients with chronic heart failure. Chest. 1996;110(4):985–91.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Edelmann F, Gelbrich G, Düngen H-D, Fröhling S, Wachter R. Stahrenberg R, et al. In: Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction results of the ex-DHF (exercise training in diastolic heart failure) pilot study; 2015.Google Scholar
  81. 81.
    Feiereisen P, Delagardelle C, Vaillant M, Lasar Y, Beissel J. Is strength training the more efficient training modality in chronic heart failure? Med Sci Sports Exerc. 2007;39(11):1910–7.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Marzolini S, Oh PI, Thomas SG, Goodman JM. Aerobic and resistance training in coronary disease: single versus multiple sets. Med Sci Sports Exerc. 2008;40(9):1557–64.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Levinger I, Bronks R, Cody DV, Linton I, Davie A. The effect of resistance training on left ventricular function and structure of patients with chronic heart failure. Int J Cardiol. 2005;105(2):159–63.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Fredriksen PM, Kahrs N, Blaasvaer S, Sigurdsen E, Gundersen O, Roeksund O, et al. Effect of physical training in children and adolescents with congenital heart disease. Cardiol Young. 2000;10(2):107–14.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Dua JS, Cooper AR, Fox KR, Stuart AG. Exercise training in adults with congenital heart disease: feasibility and benefits. Int J Cardiol. 2010;138(2):196–205.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Haskell WL, Lee I-M, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health. Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association Circulation. Med Sci Sports Exerc. 2007;39(8):1423–34.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Tudor-Locke C, Craig CL, Brown WJ, Clemes SA, De Cocker K, Giles-Corti B, et al. How many steps/day are enough? For adults. Int J Behav Nutr Phys Act. 2011;8:79.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Rognmo O, Moholdt T, Bakken H, Hole T, Molstad P, Myhr N, et al. Cardiovascular risk of high- versus moderate- intensity aerobic exercise in coronary heart disease patients. Circulation. 2012;126:1436–40.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Thorp AA, Owen N, Neuhaus M, Dunstan DW. Sedentary behaviors and subsequent health outcomes in adults: a systematic review of longitudinal studies, 1996–2011. Am J Prev Med. 2011;41(2):207–15.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, et al. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA. 1995;273(5):402–7.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Therrien J, Fredriksen P, Walker M, Granton J, Reid GJ, Webb G. A pilot study of exercise training in adult patients with repaired tetralogy of Fallot. Can J Cardiol. 2003;19(6):685–9.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Duppen N, Kapusta L, de Rijke Y, Snoeren M, Kuipers I, Koopman L, et al. The effect of exercise training on cardiac remodelling in children and young adults with corrected tetralogy of Fallot or Fontan circulation: a randomized controlled trial. Int J Cardiol. 2015;179:97–104.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Westhoff-Bleck M, Schieffer B, Tegtbur U, Meyer GP, Hoy L, Schaefer A, et al. Aerobic training in adults after atrial switch procedure for transposition of the great arteries improves exercise capacity without impairing systemic right ventricular function. Int J Cardiol. 2013;170(1):24–9.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Sutherland N, Jones B, d’Udekem Y. Should we recommend exercise after the Fontan procedure? Heart Lung Circ. 2015;24(8):753–68.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Longmuir PE, Tyrrell PN, Corey M, Faulkner G, Russell JL, McCrindle BW. Home-based rehabilitation enhances daily physical activity and motor skill in children who have undergone the Fontan procedure. Pediatr Cardiol. 2013;34(5):1130–51.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Moore SM, Charvat JM, Gordon NH, Roberts BL, Pashkow F, Ribisl P, et al. Effects of a CHANGE intervention to increase exercise maintenance following cardiac events. Ann Behav Med. 2006;31(1):53–62.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Bock BC, Carmona-Barros RE, Esler JL, Tilkemeier PL. Program participation and physical activity maintenance after cardiac rehabilitation. Behav Modif. 2003;27(1):37–53.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Stone JA, Arena R, Hauer T, Martin BJ, Austford LD, Aggarwal S. Long-term retention of aerobic fitness improvements following participation in cardiac rehabilitation. Int J Cardiol. 2011;150(3):355–6.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Longmuir PE, Brothers JA, de Ferranti SD, Hayman LL, Van Hare GF, Matherne GP, et al. Promotion of physical activity for children and adults with congenital heart disease a scientific statement from the American Heart Association. Circulation. 2013;127(21):2147–59.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Sandberg C, Pomeroy J, Thilén U, Gradmark A, Wadell K, Johansson B. Habitual physical activity in adults with congenital heart disease compared to age and gender matched controls. Can J Cardiol. 2016;32(4):547–53.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Müller J, Hess J, Hager A. Daily physical activity in adults with congenital heart disease is positively correlated with exercise capacity but not with quality of life. Clin Res Cardiol. 2012;101(1):55–61.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Tudor-Locke C, Bassett DR Jr. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004;34(1):1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Dua JS, Cooper AR, Fox KR. Physical activity levels in adults with congenital heart disease. Eur J Cardiovasc Prev Rehabil. 2007;14(2):287–93.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Dontje ML, van der Wal MH, Stolk RP, Brugemann J, Jaarsma T, Wijtvliet PE, et al. Daily physical activity in stable heart failure patients. J Cardiovasc Nurs. 2014;29(3):218–26.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Buys R, Budts W, Delecluse C, Vanhees L. Determinants of physical activity in young adults with tetralogy of Fallot. Cardiol Young. 2014;24(1):20–6.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Lawler PR, Filion KB, Eisenberg MJ. Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am Heart J. 2011;162(4):571–84.e2.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Bassareo P, Saba L, Solla P, Barbanti C, Marras A, Mercuro G. Factors influencing adaptation and performance at physical exercise in complex congenital heart diseases after surgical repair. Biomed Res Int. 2014;2014:1.CrossRefGoogle Scholar
  108. 108.
    Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care. 2008;31(4):661–6.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Tremblay MS, Warburton DE, Janssen I, Paterson DH, Latimer AE, Rhodes RE, et al. New Canadian physical activity guidelines. Appl Physiol Nutr Metab. 2011;36(1):36–46, 47–58.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Owen N, Healy GN, Matthews CE, Dunstan DW. Too much sitting: the population health science of sedentary behavior. Exerc Sport Sci Rev. 2010;38(3):105–13.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Manns PJ, Dunstan DW, Owen N, Healy GN. Addressing the nonexercise part of the activity continuum: a more realistic and achievable approach to activity programming for adults with mobility disability? Phys Ther. 2012;92(4):614–25.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Jakicic JM, Rickman AD, Lang W, Davis KK, Gibbs BB, Neiberg R, et al. Time-based physical activity interventions for weight loss: a randomized trial. Med Sci Sports Exerc. 2015;47(5):1061.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • John Willner
    • 1
  • Robert Haennel
    • 1
  • Ailar Ramadi
    • 1
  • Isabelle Vonder Muhll
    • 2
  • Andrew Mackie
    • 3
  1. 1.Faculty of Rehabilitation MedicineUniversity of AlbertaEdmontonCanada
  2. 2.Faculty of Medicine & DentistryUniversity of AlbertaEdmontonCanada
  3. 3.Stollery Children’s HospitalEdmontonCanada

Personalised recommendations