Nutrition of the Critically Ill Adult with Congenital Heart Disease and Nutritional Rehabilitation

  • Stephen J. DolgnerEmail author
  • Jason F. Deen
Part of the Congenital Heart Disease in Adolescents and Adults book series (CHDAA)


Adults with congenital heart disease are often cared for in the intensive care unit, though most are admitted for a brief period of time after elective cardiac surgery. While there are not likely to be significant nutritional concerns in the immediate post-surgery period, there may be significant underlying malnutrition that may affect postoperative recovery. In adult congenital heart disease patients admitted for heart failure exacerbations or with a prolonged recovery after cardiac surgery, careful attention must be paid to nutritional status to ensure patients are provided with the optimal support to assist them in their recovery.


Adult congenital heart disease Intensive care unit Nutrition Critical illness 


  1. 1.
    Price S, Jaggar SI, Jordan S, Trenfield S, Khan M, Sethia B, et al. Adult congenital heart disease: intensive care management and outcome prediction. Intensive Care Med. 2007;33(4):652–9.CrossRefGoogle Scholar
  2. 2.
    Engelman DT, Adams DH, Byrne JG, Aranki SF, Collins JJ Jr, Couper GS, et al. Impact of body mass index and albumin on morbidity and mortality after cardiac surgery. J Thorac Cardiovasc Surg. 1999;118(5):866–73.CrossRefGoogle Scholar
  3. 3.
    van Venrooij LM, de Vos R, Borgmeijer-Hoelen MM, Haaring C, de Mol BA. Preoperative unintended weight loss and low body mass index in relation to complications and length of stay after cardiac surgery. Am J Clin Nutr. 2008;87(6):1656–61.CrossRefGoogle Scholar
  4. 4.
    van Venrooij LM, de Vos R, Zijlstra E, Borgmeijer-Hoelen MM, van Leeuwen PA, de Mol BA. The impact of low preoperative fat-free body mass on infections and length of stay after cardiac surgery: a prospective cohort study. J Thorac Cardiovasc Surg. 2011;142(5):1263–9.CrossRefGoogle Scholar
  5. 5.
    van Venrooij LM, van Leeuwen PA, Hopmans W, Borgmeijer-Hoelen MM, de Vos R, De Mol BA. Accuracy of quick and easy undernutrition screening tools--short nutritional assessment questionnaire, malnutrition universal screening tool, and modified malnutrition universal screening tool--in patients undergoing cardiac surgery. J Am Diet Assoc. 2011;111(12):1924–30.CrossRefGoogle Scholar
  6. 6.
    Yu PJ, Cassiere HA, Dellis SL, Manetta F, Kohn N, Hartman AR. Impact of preoperative Prealbumin on outcomes after cardiac surgery. JPEN J Parenter Enteral Nutr. 2015;39(7):870–4.CrossRefGoogle Scholar
  7. 7.
    Arabi YM, Aldawood AS, Al-Dorzi HM, Tamim HM, Haddad SH, Jones G, et al. Permissive underfeeding or standard enteral feeding in high- and low-nutritional-risk critically ill adults. Post hoc analysis of the PermiT trial. Am J Respir Crit Care Med. 2017;195(5):652–62.CrossRefGoogle Scholar
  8. 8.
    Brida M, Dimopoulos K, Kempny A, Liodakis E, Alonso-Gonzalez R, Swan L, et al. Body mass index in adult congenital heart disease. Heart. 2017;103:1250.CrossRefGoogle Scholar
  9. 9.
    Thourani VH, Keeling WB, Kilgo PD, Puskas JD, Lattouf OM, Chen EP, et al. The impact of body mass index on morbidity and short- and long-term mortality in cardiac valvular surgery. J Thorac Cardiovasc Surg. 2011;142(5):1052–61.CrossRefGoogle Scholar
  10. 10.
    Mariscalco G, Wozniak MJ, Dawson AG, Serraino GF, Porter R, Nath M, et al. Body mass index and mortality among adults undergoing cardiac surgery: a Nationwide study with a systematic review and meta-analysis. Circulation. 2017;135(9):850–63.CrossRefGoogle Scholar
  11. 11.
    Ghanta RK, LaPar DJ, Zhang Q, Devarkonda V, Isbell JM, Yarboro LT, et al. Obesity increases risk-adjusted morbidity, mortality, and cost following cardiac surgery. J Am Heart Assoc. 2017;6(3):e003831.CrossRefGoogle Scholar
  12. 12.
    Seres DS, Valcarcel M, Guillaume A. Advantages of enteral nutrition over parenteral nutrition. Therap Adv Gastroenterol. 2013;6(2):157–67.CrossRefGoogle Scholar
  13. 13.
    Peter JV, Moran JL, Phillips-Hughes J. A metaanalysis of treatment outcomes of early enteral versus early parenteral nutrition in hospitalized patients. Crit Care Med. 2005;33(1):213–20. discussion 60-1CrossRefGoogle Scholar
  14. 14.
    Taylor BE, McClave SA, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). Crit Care Med. 2016;44(2):390–438.CrossRefGoogle Scholar
  15. 15.
    Reintam Blaser A, Starkopf J, Alhazzani W, Berger MM, Casaer MP, Deane AM, et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med. 2017;43(3):380–98.CrossRefGoogle Scholar
  16. 16.
    Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–17.CrossRefGoogle Scholar
  17. 17.
    Hermans G, Casaer MP, Clerckx B, Guiza F, Vanhullebusch T, Derde S, et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Respir Med. 2013;1(8):621–9.CrossRefGoogle Scholar
  18. 18.
    Harvey SE, Parrott F, Harrison DA, Bear DE, Segaran E, Beale R, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371(18):1673–84.CrossRefGoogle Scholar
  19. 19.
    Elke G, van Zanten AR, Lemieux M, McCall M, Jeejeebhoy KN, Kott M, et al. Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. Crit Care. 2016;20(1):117.CrossRefGoogle Scholar
  20. 20.
    Doig GS, Simpson F, Sweetman EA, Finfer SR, Cooper DJ, Heighes PT, et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013;309(20):2130–8.CrossRefGoogle Scholar
  21. 21.
    Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet. 2013;381(9864):385–93.CrossRefGoogle Scholar
  22. 22.
    National Heart. L, blood institute acute respiratory distress syndrome clinical trials N, Rice TW, wheeler AP, Thompson BT, Steingrub J, et al. initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307(8):795–803.CrossRefGoogle Scholar
  23. 23.
    Needham DM, Dinglas VD, Morris PE, Jackson JC, Hough CL, Mendez-Tellez PA, et al. Physical and cognitive performance of patients with acute lung injury 1 year after initial trophic versus full enteral feeding. EDEN trial follow-up. Am J Respir Crit Care Med. 2013;188(5):567–76.CrossRefGoogle Scholar
  24. 24.
    Arabi YM, Aldawood AS, Haddad SH, Al-Dorzi HM, Tamim HM, Jones G, et al. Permissive underfeeding or standard enteral feeding in critically ill adults. N Engl J Med. 2015;372(25):2398–408.CrossRefGoogle Scholar
  25. 25.
    Cahill GF Jr. Starvation in man. N Engl J Med. 1970;282(12):668–75.CrossRefGoogle Scholar
  26. 26.
    Wolfe RR. Carbohydrate metabolism in the critically ill patient. Implications for nutritional support Crit Care Clin. 1987;3(1):11–24.CrossRefGoogle Scholar
  27. 27.
    Weijs PJ, Looijaard WG, Beishuizen A, Girbes AR, Oudemans-van Straaten HM. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit Care. 2014;18(6):701.CrossRefGoogle Scholar
  28. 28.
    Novak F, Heyland DK, Avenell A, Drover JW, Su X. Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med. 2002;30(9):2022–9.CrossRefGoogle Scholar
  29. 29.
    Heyland D, Muscedere J, Wischmeyer PE, Cook D, Jones G, Albert M, et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368(16):1489–97.CrossRefGoogle Scholar
  30. 30.
    Andrews PJ, Avenell A, Noble DW, Campbell MK, Croal BL, Simpson WG, et al. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ. 2011;342:d1542.CrossRefGoogle Scholar
  31. 31.
    van Zanten AR, Sztark F, Kaisers UX, Zielmann S, Felbinger TW, Sablotzki AR, et al. High-protein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition and nosocomial infections in the ICU: a randomized clinical trial. JAMA. 2014;312(5):514–24.CrossRefGoogle Scholar
  32. 32.
    Pontes-Arruda A, Demichele S, Seth A, Singer P. The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of outcome data. JPEN J Parenter Enteral Nutr. 2008;32(6):596–605.CrossRefGoogle Scholar
  33. 33.
    Rice TW, Wheeler AP, Thompson BT, deBoisblanc BP, Steingrub J, Rock P, et al. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011;306(14):1574–81.CrossRefGoogle Scholar
  34. 34.
    Casaer MP, Van den Berghe G. Nutrition in the acute phase of critical illness. N Engl J Med. 2014;370(13):1227–36.CrossRefGoogle Scholar
  35. 35.
    Mozaffarian D, Marchioli R, Macchia A, Silletta MG, Ferrazzi P, Gardner TJ, et al. Fish oil and postoperative atrial fibrillation: the Omega-3 fatty acids for prevention of post-operative atrial fibrillation (OPERA) randomized trial. JAMA. 2012;308(19):2001–11.CrossRefGoogle Scholar
  36. 36.
    Rodrigo R, Korantzopoulos P, Cereceda M, Asenjo R, Zamorano J, Villalabeitia E, et al. A randomized controlled trial to prevent post-operative atrial fibrillation by antioxidant reinforcement. J Am Coll Cardiol. 2013;62(16):1457–65.CrossRefGoogle Scholar
  37. 37.
    Avitabile CM, Leonard MB, Zemel BS, Brodsky JL, Lee D, Dodds K, et al. Lean mass deficits, vitamin D status and exercise capacity in children and young adults after Fontan palliation. Heart. 2014;100(21):1702–7.CrossRefGoogle Scholar
  38. 38.
    Umar SB, DiBaise JK. Protein-losing enteropathy: case illustrations and clinical review. Am J Gastroenterol. 2010;105(1):43–9. quiz 50CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Cardiology, Seattle Children’s HospitalUniversity of WashingtonSeattleUSA
  2. 2.Division of Cardiology, Department of MedicineUniversity of Washington Medical CenterSeattleUSA

Personalised recommendations