Impact of Non-cardiac Comorbidities in Adults with Congenital Heart Disease: Management of Multisystem Complications

  • Sarah W. GoldbergEmail author
  • Catherine K. Allan
  • Christopher P. Learn
Part of the Congenital Heart Disease in Adolescents and Adults book series (CHDAA)


The prevalence and impact of non-cardiac comorbidities in adult patients with congenital heart disease increase over time, and these complications are often specifically a consequence of the long-term altered cardiovascular physiology or sequelae of previous therapies. For the ACHD patient admitted to the intensive care unit (ICU) for either surgical or medical treatment, an assessment of the burden of multisystem disease, as well as an understanding of the underlying cardiovascular pathophysiology, is essential for optimal management of these complex patients. This chapter takes an organ-system-based approach to reviewing common comorbidities in the ACHD patient, focusing on conditions that are directly related to ACHD status and may significantly impact ICU care.


Adult with congenital heart disease Comorbidities Sequelae Multisystem disease Cardiac intensive care 


  1. 1.
    Alonso-Gonzalez R, Borgia F, Diller GP, et al. Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival. Circulation. 2013;127:882–90.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Engelings CC, Helm PC, Abdul-Khaliq H, et al. Cause of death in adults with congenital heart disease—an analysis of the German National Register for Congenital Heart Defects. Int J Cardiol. 2016;211:31–6.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Gaultier C, Boule M, Thibert M, Leca F. Resting lung function in children after repair of tetralogy of Fallot. Chest. 1986;89:561–7.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Kim YY, He W, MacGillivray TE, Benavidez OJ. Readmissions after adult congenital heart surgery: frequency and risk factors. Congenit Heart Dis. 2017;12:159–65.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Agarwal S, Sud K, Menon V. Nationwide hospitalization trends in adult congenital heart disease across 2003–2012. J Am Heart Assoc. 2016;5:e002330.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Rodriguez FH, Moodie DS, Parekh DR, et al. Outcomes of heart failure-related hospitalization in adults with congenital heart disease in the United States. Congenit Heart Dis. 2013;8:513–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Engström G, Lind P, Hedblad B, et al. Lung function and cardiovascular risk: relationship with inflammation-sensitive plasma proteins. Circulation. 2002;106:2555–60.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Mott A, Fraser C Jr, McKenzie E, et al. Perioperative care of the adult with congenital heart disease in a free-standing tertiary pediatric facility. Pediatr Cardiol. 2002;23:624–30.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Dore A, Glancy DL, Stone S, Menashe VD, Somerville J. Cardiac surgery for grown-up congenital heart patients: survey of 307 consecutive operations from 1991 to 1994. Am J Cardiol. 1997;80:906–13.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Abarbanell GL, Goldberg CS, Devaney EJ, Ohye RG, Bove EL, Charpie JR. Early surgical morbidity and mortality in adults with congenital heart disease: the University of Michigan experience. Congenit Heart Dis. 2008;3:82–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Berdat PA, Immer F, Pfammatter J-P, Carrel T. Reoperations in adults with congenital heart disease: analysis of early outcome. Int J Cardiol. 2004;93:239–45.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bertrand P, Navarro H, Caussade S, Holmgren N, Sánchez I. Airway anomalies in children with Down syndrome: endoscopic findings. Pediatr Pulmonol. 2003;36:137–41.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Healy F, Hanna BD, Zinman R. Pulmonary complications of congenital heart disease. Paediatr Respir Rev. 2012;13:10–5.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kusak B, Cichocka-Jarosz E, Jedynak-Wasowicz U, Lis G. Types of laryngomalacia in children: interrelationship between clinical course and comorbid conditions. Eur Arch Otorhinolaryngol. 2017;274:1577–83.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kussman BD, Geva T, Mcgowan FX. Cardiovascular causes of airway compression. Paediatr Anaesth. 2004;14:60–74.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sebening C, Jakob H, Tochtermann U, et al. Vascular tracheobronchial compression syndromes—experience in surgical treatment and literature review. Thorac Cardiovasc Surg. 2000;48:164–74.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Fischer JE, Allen P, Fanconi S. Delay of extubation in neonates and children after cardiac surgery: impact of ventilator-associated pneumonia. Intensive Care Med. 2000;26:942–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Tan L, Sun X, Zhu X, Zhang Z, Li J, Shu Q. Epidemiology of nosocomial pneumonia in infants after cardiac surgery. Chest. 2004;125:410–7.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Verheugt CL, Uiterwaal CSPM, Van Der Velde ET, et al. Mortality in adult congenital heart disease. Eur Heart J. 2010;31:1220–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Pássaro L, Harbarth S, Landelle C. Prevention of hospital-acquired pneumonia in non-ventilated adult patients: a narrative review. Antimicrob Resist Infect Control. 2016;5:43.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mok Q, Ross-Russell R, Mulvey D, Green M, Shinebourne E. Phrenic nerve injury in infants and children undergoing cardiac surgery. Br Heart J. 1991;65:287–92.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Joho-Arreola A, Bauersfeld U, Stauffer U, Baenziger O, Bernet V. Incidence and treatment of diaphragmatic paralysis after cardiac surgery in children. Eur J Cardiothorac Surg. 2005;27:53–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Berend N, Marlin G. Arrest of alveolar multiplication in kyphoscoliosis. Pathology. 1979;11:485–91.PubMedCrossRefGoogle Scholar
  24. 24.
    Weber B, Smith J, Briscoe W, Friedman S, King T. Pulmonary function in asymptomatic adolescents with idiopathic scoliosis. Am Rev Respir Dis. 1975;111:389–97.PubMedGoogle Scholar
  25. 25.
    Day G, Upadhyay S, Ho E, Leong J, Ip M. Pulmonary functions in congenital scoliosis. Spine. 1994;19:1027–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Jones R, Kennedy J, Hasham F, Owen R, Taylor J. Mechanical inefficiency of the thoracic cage in scoliosis. Thorax. 1981;36:456–61.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Redding G, Song K, Inscore S, Effmann E, Campbell R. Lung function asymmetry in children with congenital and infantile scoliosis. Spine J. 2008;8:639–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Lowe K, Alvarez DF, King JA, Stevens T. Perivascular fluid cuffs decrease lung compliance by increasing tissue resistance. Crit Care Med. 2010;38:1458–66.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Remetz M, Cleman M, Cabin H. Pulmonary and pleural complications of cardiac disease. Clin Chest Med. 1989;10:545–92.PubMedGoogle Scholar
  30. 30.
    Chenoweth D, Cooper S, Hugli T, Stewart R, Blackstone E, Kirklin J. Complement activation during cardiopulmonary bypass: evidence for generation of C3a and C5a anaphylatoxins. N Engl J Med. 1981;304:497–503.PubMedCrossRefGoogle Scholar
  31. 31.
    Kalfin R, Engelman R, Rousou J, et al. Induction of interleukin-8 expression during cardiopulmonary bypass. Circulation. 1993;88:II401–6.PubMedGoogle Scholar
  32. 32.
    Ng C, Wan S, Yim A, Arifi A. Pulmonary dysfunction after cardiac surgery. Chest. 2002;121:1269–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Groeneveld aBJ, Jansen EK, Verheij J. Mechanisms of pulmonary dysfunction after on-pump and off-pump cardiac surgery: a prospective cohort study. J Cardiothorac Surg. 2007;2:11.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Jansen P, te Velthuis H, Wildevuur W, et al. Cardiopulmonary bypass with modified fluid gelatin and heparin-coated circuits. Br J Anaesth. 1996;76:13–9.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Herold SE, Young TW, Ge D, Snieder H, Lovrekovic GZ. Sleep disordered breathing in pediatric patients with tetralogy of Fallot. Pediatr Cardiol. 2006;27:243–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Cotts T, Smith KR, Lu J, Dorfman AL, Norris MD. Risk for sleep-disordered breathing in adults after atrial switch repairs for d-looped transposition of the great arteries. Pediatr Cardiol. 2014;35:888–92.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Miles S, Ahmad W, Bailey A, Hatton R, Boyle A, Collins N. Sleep-disordered breathing in patients with pulmonary valve incompetence complicating congenital heart disease. Congenit Heart Dis. 2016;11:678–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Fan Z, Ahn M, Roth HL, Li L, Vaughn BV. Sleep apnea and hypoventilation in patients with down syndrome: analysis of 144 polysomnogram studies. Children (Basel). 2017;4:55.Google Scholar
  39. 39.
    Lanfranchi PA, Somers VK, Braghiroli A, Corra U, Eleuteri E, Giannuzzi P. Central sleep apnea in left ventricular dysfunction: prevalence and implications for arrhythmic risk. Circulation. 2003;107:727–32.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Javaheri S, Parker TJ, Wexler L, et al. Occult sleep-disordered breathing in stable congestive heart failure. Ann Intern Med. 1995;122:487–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Legault S, Lanfranchi P, Montplaisir J, et al. Nocturnal breathing in cyanotic congenital heart disease. Int J Cardiol. 2008;128:197–200.PubMedCrossRefGoogle Scholar
  42. 42.
    Fredriksen PM, Therrien J, Veldtman G, et al. Lung function and aerobic capacity in adult patients following modified Fontan procedure. Heart. 2001;85:295–9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Muneuchi J, Joo K, Yamamura K, et al. Exertional oscillatory ventilation during cardiopulmonary exercise test in fontan patients with total cavopulmonary connection. Pediatr Cardiol. 2009;30:452–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Dimopoulos K, Giannakoulas G, Wort SJ, Gatzoulis MA. Pulmonary arterial hypertension in adults with congenital heart disease: distinct differences from other causes of pulmonary arterial hypertension and management implications. Curr Opin Cardiol. 2008;23:545–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Engelfriet PM, Duffels MGJ, Möller T, et al. Pulmonary arterial hypertension in adults born with a heart septal defect: the Euro Heart Survey on adult congenital heart disease. Heart. 2007;93:682–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Rosenthal D, Friedman A, Kleinman C, Kopf G, Rosenfeld L, Hellenbrand W. Thromboembolic complications after Fontan operations. Circulation. 1995;92:287–93.CrossRefGoogle Scholar
  47. 47.
    d'Udekem Y, Iyengar AJ, Galati JC, et al. Redefining expectations of long-term survival after the Fontan procedure: twenty-five years of follow-up from the entire population of Australia and New Zealand. Circulation. 2014;130:S32–S8.PubMedCrossRefGoogle Scholar
  48. 48.
    Rubin BK. Plastic bronchitis. Clin Chest Med. 2016;37:405–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Redington A. Intensive care in the adult with congenital heart disease. Pediatr Crit Care Med. 2016;17:S377–S82.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Dimopoulos K, Diller G-P, Koltsida E, et al. Prevalence, predictors, and prognostic value of renal dysfunction in adults with congenital heart disease. Circulation. 2008;117:2320–8.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Price S, Jaggar SI, Jordan S, et al. Adult congenital heart disease: intensive care management and outcome prediction. Intensive Care Med. 2007;33:652–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Bhatt AB, Rajabali A, He W, Benavidez OJ. High resource use among adult congenital heart surgery admissions in adult hospitals: risk factors and association with death and comorbidities. Congenit Heart Dis. 2015;10:13–20.PubMedCrossRefGoogle Scholar
  53. 53.
    Allan CK. Intensive care of the adult patient with congenital heart disease. Prog Cardiovasc Dis. 2011;53:274–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Martínez-Quintana E, Rodríguez-González F, Fábregas-Brouard M, Nieto-Lago V. Serum and 24-hour urine analysis in adult cyanotic and noncyanotic congenital heart disease patients. Congenit Heart Dis. 2009;4:147–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Kwiatkowski D, Price E, Axelrod D, et al. Incidence, risk factors, and outcomes of acute kidney injury in adults undergoing surgery for congenital heart disease. Cardiol Young. 2017;27:1068–75.PubMedCrossRefGoogle Scholar
  56. 56.
    Nasr VG, Faraoni D, Valente AM, DiNardo JA. Outcomes and costs of cardiac surgery in adults with congenital heart disease. Pediatr Cardiol. 2017;38:1359.PubMedCrossRefGoogle Scholar
  57. 57.
    Cedars A, Benjamin L, Burns S, Novak E, Amin A. Clinical predictors of length of stay in adults with congenital heart disease. Heart. 2017;103:1258–63.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Welke KF, Dearani JA, Ghanayem NS, Beland MJ, Shen I, Ebels T. Renal complications associated with the treatment of patients with congenital cardiac disease: consensus definitions from the Multi-Societal Database Committee for Pediatric and Congenital Heart Disease. Cardiol Young. 2008;18:222–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington AN. Cardiopulmonary interactions after Fontan operations: augmentation of cardiac output using negative pressure ventilation. Circulation. 1997;96:3934–42.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Malbrain MLNG, Cheatham ML, Kirkpatrick A, et al. Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions. Intensive Care Med. 2006;32:1722–32.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Williams D, Kiernan P, Metke M, Marsh H, Danielson GK. Hemodynamic response to positive end-expiratory pressure following right atrium-pulmonary artery bypass (Fontan procedure). J Thorac Cardiovasc Surg. 1984;87:856–61.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Cheatham ML, Malbrain MLNG, Kirkpatrick A, et al. Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. II. Recommendations. Intensive Care Med. 2007;33:951–62.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Landoni G, Biondi-Zoccai GGL, Marino G, et al. Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vasc Anesth. 2008;22:27–33.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Stone GW, McCullough PA, Tumlin JA, et al. Fenoldopam mesylate for the prevention of contrast-induced nephropathy. J Am Med Assoc. 2003;290:2284–91.CrossRefGoogle Scholar
  65. 65.
    Brown JR, Block CA, Malenka DJ, O’Connor GT, Schoolwerth AC, Thompson CA. Sodium bicarbonate plus N-acetylcysteine prophylaxis. A meta-analysis. J Am Coll Cardiol Intv. 2009;2:1116–24.CrossRefGoogle Scholar
  66. 66.
    Briguori C, Airoldi F, D'Andrea D, et al. Renal insufficiency following contrast media administration trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation. 2007;115:1211–7.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Morsheimer MM, Rychik J, Forbes L, et al. Risk factors and clinical significance of lymphopenia in survivors of the Fontan procedure for single-ventricle congenital cardiac disease. J Allergy Clin Immunol Pract. 2016;4:491–6.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Eysteinsdottir JH, Freysdottir J, Haraldsson A, et al. The influence of partial or total thymectomy during open heart surgery in infants on the immune function later in life. Clin Exp Immunol. 2004;136:349–55.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Tillipman Ladinsky H, Gillispie M, Sriaroon P, Leiding JW. Thoracic duct injury resulting in abnormal newborn screen. J Allergy Clin Immunol Pract. 2013;1:583–8.CrossRefGoogle Scholar
  70. 70.
    Dori Y, Keller MS, Fogel MA, et al. MRI of lymphatic abnormalities after functional single-ventricle palliation surgery. Am J Roentgenol. 2014;203:426–31.CrossRefGoogle Scholar
  71. 71.
    Lenz D, Hambsch J, Schneider P, Tárnok A. Protein-losing enteropathy after fontan surgery: is assessment of risk patients with immunological data possible? Cytometry B Clin Cytom. 2003;53:34–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Magdo HS, Stillwell TL, Greenhawt MJ, et al. Immune abnormalities in Fontan protein-losing enteropathy: a case-control study. J Pediatr. 2015;167:331–7.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Baumgartner H, Bonhoeffer P, De Groot NMS, et al. ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31:2915–57.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Verheugt CL, Uiterwaal CSPM, Van Der Velde ET, et al. Turning 18 with congenital heart disease: prediction of infective endocarditis based on a large population. Eur Heart J. 2011;32:1926–34.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Tutarel O, Alonso-Gonzalez R, Montanaro C, et al. Infective endocarditis in adults with congenital heart disease remains a lethal disease. Heart. 2018;104:161–5.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Niwa K, Nakazawa M, Tateno S, Yoshinaga M, Terai M. Infective endocarditis in congenital heart disease: Japanese national collaboration study. Heart. 2005;91:795–800.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Pizzi MN, Dos-Subirà L, Roque A, et al. 18 F-FDG-PET/CT angiography in the diagnosis of infective endocarditis and cardiac device infection in adult patients with congenital heart disease and prosthetic material. Int J Cardiol. 2017;248:396–402.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Engelfriet P, Boersma E, Oechslin E, et al. The spectrum of adult congenital heart disease in Europe: morbidity and mortality in a 5 year follow-up period—the Euro Heart Survey on adult congenital heart disease. Eur Heart J. 2005;26:2325–33.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Knirsch W, Haas NA, Uhlemann F, Dietz K, Lange PE. Clinical course and complications of infective endocarditis in patients growing up with congenital heart disease. Int J Cardiol. 2005;101:285–91.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Vogt M, Lang T, Frösner G, et al. Prevalence and clinical outcome of hepatitis C infection in children who underwent cardiac surgery before the implementation of blood-donor screening. N Engl J Med. 1999;341:866–70.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Wang A, Book WM, McConnell M, Lyle T, Rodby K, Mahle WT. Prevalence of hepatitis C infection in adult patients who underwent congenital heart surgery prior to screening in 1992. Am J Cardiol. 2007;100:1307–9.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Vogt M, Mühlbauer F, Braun SL, et al. Prevalence and risk factors of hepatitis C infection after cardiac surgery in childhood before and after blood donor screening. Infection. 2004;32:134–7.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Cox DA, Ginde S, Tweddell JS, Earing MG. Outcomes of a hepatitis C screening protocol in at-risk adults with prior cardiac surgery. World J Pediatr Congenit Heart Surg. 2014;5:503–6.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Alderden J, Rondinelli J, Pepper G, Cummins M, Whitney J. Risk factors for pressure injuries among critical care patients: a systematic review. Int J Nurs Stud. 2017;71:97–114.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Goldberg DJ, Dodds K, Avitabile CM, et al. Children with protein-losing enteropathy after the Fontan operation are at risk for abnormal bone mineral density. Pediatr Cardiol. 2012;33:1264–8.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Madsen NL, Marino BS, Woo JG, et al. Congenital heart disease with and without cyanotic potential and the long-term risk of diabetes mellitus: a population-based follow-up study. J Am Heart Assoc. 2016;5:e003076.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Umpierrez G, Cardona S, Pasquel F, et al. Randomized controlled trial of intensive versus conservative glucose control in patients undergoing coronary artery bypass graft surgery: GLUCO-CABG trial. Diabetes Care. 2015;38:1665–72.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Fazio S, Palmieri EA, Lombardi G, Biondi B. Effects of thyroid hormone on the cardiovascular system. Recent Prog Horm Res. 2004;59:31–50.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ladenson PW, Levin AA, Ridgway EC, Daniels GH. Complications of surgery in hypothyroid patients. Am J Med. 1984;77:261–6.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Bennett-Guerrero E, Kramer DC, Schwinn DA. Effect of chronic and acute thyroid hormone reduction on perioperative outcome. Anesth Analg. 1997;85:30–6.PubMedGoogle Scholar
  91. 91.
    Palace MR. Perioperative management of thyroid dysfunction. Health Serv Insights. 2017;10:1178632916689677.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Deen JF, Krieger EV, Slee AE, et al. Metabolic syndrome in adults with congenital heart disease. J Am Heart Assoc. 2016;5:e001132.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Tzimas P, Petrou A, Laou E, Milionis H, Mikhailidis DP, Papadopoulos G. Impact of metabolic syndrome in surgical patients: should we bother?: table 1. Br J Anaesth. 2015;115:194–202.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Lerman JB, Parness IA, Shenoy RU. Body weights in adults with congenital heart disease and the obesity frequency. Am J Cardiol. 2017;119:638–42.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Brida M, Dimopoulos K, Kempny A, et al. Body mass index in adult congenital heart disease. Heart. 2017;103:1250–7.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Bajwa SJS, Sehgal V, Bajwa SK. Clinical and critical care concerns in severely ill obese patient. Indian J Endocrinol Metab. 2012;16:740–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Shashaty MGS, Stapleton RD. Physiological and management implications of obesity in critical illness. Ann Am Thorac Soc. 2014;11:1286–97.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet. 2010;49:71–87.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Pelosi P, Croci M, Ravagnan I, Vicardi P, Gattinoni L. Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest. 1996;109:144–51.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Tomkiewicz-Pajak L, Hoffman P, Trojnarska O, Lipczynska M, Podolec P, Undas A. Abnormalities in blood coagulation, fibrinolysis, and platelet activation in adult patients after the Fontan procedure. J Thorac Cardiovasc Surg. 2014;147:1284–90.PubMedCrossRefGoogle Scholar
  101. 101.
    Takeuchi D, Inai K, Shinohara T, Nakanishi T, Park IS. Blood coagulation abnormalities and the usefulness of D-dimer level for detecting intracardiac thrombosis in adult Fontan patients. Int J Cardiol. 2016;224:139–44.PubMedCrossRefGoogle Scholar
  102. 102.
    Sandler KL, Markham LW, Mah ML, Byrum EP, Williams JR. Optimizing CT angiography in patients with Fontan physiology: single-center experience of dual-site power injection. Clin Radiol. 2014;69:e562–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Broberg CS, Jayaweera AR, Diller GP, et al. Seeking optimal relation between oxygen saturation and hemoglobin concentration in adults with cyanosis from congenital heart disease. Am J Cardiol. 2011;107:595–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Oechslin E, Mebus S, Schulze-Neick I, et al. The adult patient with Eisenmenger syndrome: a medical update after dana point part III: specific management and surgical aspects. Curr Cardiol Rev. 2010;6:363–72.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Wu FM, Ukomadu C, Odze RD, Valente AM, Mayer JE Jr, Earing MG. Liver disease in the patient with Fontan circulation. Congenit Heart Dis. 2011;6:190–201.PubMedCrossRefGoogle Scholar
  106. 106.
    Wijdicks EF. Hepatic encephalopathy. N Engl J Med. 2016;375:1660–70.PubMedCrossRefGoogle Scholar
  107. 107.
    Vilstrup H, Amodio P, Bajaj J, et al. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology. 2014;60:715–35.PubMedCrossRefGoogle Scholar
  108. 108.
    Mouri S, Tripon S, Rudler M, et al. FOUR score, a reliable score for assessing overt hepatic encephalopathy in cirrhotic patients. Neurocrit Care. 2015;22:251–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Jensen AS, Idorn L, Thomsen C, et al. Prevalence of cerebral and pulmonary thrombosis in patients with cyanotic congenital heart disease. Heart. 2015;101:1540–6.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Puri R, Auffret V, Rodés-Cabau J. Bioprosthetic valve thrombosis. J Am Coll Cardiol. 2017;69:2193–211.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Arrich J, Holzer M, Havel C, Warenits AM, Herkner H. Pre-hospital versus in-hospital initiation of cooling for survival and neuroprotection after out-of-hospital cardiac arrest. Cochrane Database Syst Rev. 2016;3:CD010570.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Chan PS, Berg RA, Tang Y, Curtis LH, Spertus JA. Association between therapeutic hypothermia and survival after in-hospital cardiac arrest. JAMA. 2016;316:1375.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Moler FW, Silverstein FS, Holubkov R, et al. Therapeutic hypothermia after in-hospital cardiac arrest in children. N Engl J Med. 2017;376:318–29.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Callaway CW, Donnino MW, Fink EL, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132:S465–82.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kowalski M, Udy AA, McRobbie HJ, Dooley MJ. Nicotine replacement therapy for agitation and delirium management in the intensive care unit: a systematic review of the literature. J Intensive Care. 2016;4:69.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Schuckit MA. Recognition and management of withdrawal delirium (delirium tremens). N Engl J Med. 2014;371:2109–13.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Moons P, Kovacs AH, Luyckx K, et al. Patient-reported outcomes in adults with congenital heart disease: inter-country variation, standard of living and healthcare system factors. Int J Cardiol. 2018;251:34–41.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Ghoneim MM, O’Hara MW. Depression and postoperative complications: an overview. BMC Surg. 2016;16:5.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Morone NE, Weiner DK, Herbeck Belnap B, et al. The impact of pain and depression on recovery after coronary artery bypass grafting. Psychosom Med. 2010;72:620–5.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Auerbach AD, Vittinghoff E, Maselli J, Pekow PS, Young JQ, Lindenauer PK. Perioperative use of selective serotonin reuptake inhibitors and risks for adverse outcomes of surgery. JAMA Intern Med. 2013;173:1075–81.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Xiong GL, Jiang W, Clare RM, et al. Safety of selective serotonin reuptake inhibitor use prior to coronary artery bypass grafting. Clin Cardiol. 2010;33:E94–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Sarah W. Goldberg
    • 1
    Email author
  • Catherine K. Allan
    • 1
  • Christopher P. Learn
    • 2
  1. 1.Pediatric Cardiology, Boston Children’s HospitalBostonUSA
  2. 2.Massachusetts General HospitalBostonUSA

Personalised recommendations