Critical Care Management of the Adult with the Univentricular Heart

  • Mina HafzalahEmail author
  • John M. Costello
  • Carl L. Backer
  • R. Andrew de Freitas
  • Constantine Mavroudis
Part of the Congenital Heart Disease in Adolescents and Adults book series (CHDAA)


Survival of children with functionally univentricular hearts has improved due to staged correction, innovative venous-pulmonary artery connections, and structured perioperative care. A rapidly growing number of these patients are reaching adulthood and are being admitted to intensive care units in greater numbers. Although many adults with functionally univentricular hearts will have undergone a Fontan operation, some will present unoperated or with incomplete single ventricle surgical palliation. Acute on chronic heart failure and the end-organ manifestations of this physiologic state are the most common indications for intensive care unit admission. Given the unique cardiovascular anatomy, physiology, and non-cardiac comorbidities present in this patient population, an understanding of the nuances in cardiac critical care evaluation and management is necessary to achieve optimal outcomes. Access to medical and surgical subspecialists with expertise in adult congenital heart disease is often needed. Thus, when feasible, intensive care for this patient population should be provided in a regional adult congenital heart disease center. In this chapter, we summarize the most common indications for intensive care admission in adults with functionally univentricular hearts, as well as the general principles regarding evaluation in the context of critical illness. We also review critical care management strategies that seem most appropriate based upon the unique physiologic characteristics and cardiopulmonary interactions inherent to this patient population.


Functionally univentricular heart Single ventricle Adult congenital heart disease Fontan operation Fontan conversion Intensive care Cardiopulmonary interactions Low cardiac output Plastic bronchitis Protein-losing enteropathy Cardiac arrest Mechanical circulatory support 


  1. 1.
    Khairy P, Poirier N, Mercier LA. Univentricular heart. Circulation. 2007;115(6):800–12.CrossRefGoogle Scholar
  2. 2.
    Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115(2):163–72.CrossRefGoogle Scholar
  3. 3.
    Webb G, Mulder BJ, Aboulhosn J, Daniels CJ, Elizari MA, Hong G, et al. The care of adults with congenital heart disease across the globe: current assessment and future perspective: a position statement from the International Society for Adult Congenital Heart Disease (ISACHD). Int J Cardiol. 2015;195:326–33.CrossRefGoogle Scholar
  4. 4.
    Prakash A, Khan MA, Hardy R, Torres AJ, Chen JM, Gersony WM. A new diagnostic algorithm for assessment of patients with single ventricle before a Fontan operation. J Thorac Cardiovasc Surg. 2009;138(4):917–23.CrossRefGoogle Scholar
  5. 5.
    Ohye RG, Schranz D, D'Udekem Y. Current therapy for hypoplastic left heart syndrome and related single ventricle lesions. Circulation. 2016;134(17):1265–79.CrossRefGoogle Scholar
  6. 6.
    Norwood WI, Lang P, Hansen DD. Physiologic repair of aortic atresia-hypoplastic left heart syndrome. N Engl J Med. 1983;308(1):23–6.CrossRefGoogle Scholar
  7. 7.
    Sano S, Ishino K, Kawada M, Arai S, Kasahara S, Asai T, et al. Right ventricle-pulmonary artery shunt in first-stage palliation of hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2003;126:504–10.CrossRefGoogle Scholar
  8. 8.
    Forbess JM, Cook N, Serraf A, Burke RP, Mayer JE Jr, Jonas RA. An institutional experience with second- and third-stage palliative procedures for hypoplastic left heart syndrome: the impact of the bidirectional cavopulmonary shunt. J Am Coll Cardiol. 1997;29(3):665–70.CrossRefGoogle Scholar
  9. 9.
    Tanoue Y, Sese A, Ueno Y, Joh K, Hijii T. Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk Fontan candidates. Circulation. 2001;103(17):2176–80.CrossRefGoogle Scholar
  10. 10.
    Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax. 1971;26(3):240–8.CrossRefGoogle Scholar
  11. 11.
    Kumar SP, Rubinstein CS, Simsic JM, Taylor AB, Saul JP, Bradley SM. Lateral tunnel versus extracardiac conduit Fontan procedure: a concurrent comparison. Ann Thorac Surg. 2003;76(5):1389–96.CrossRefGoogle Scholar
  12. 12.
    Iyengar AJ, Winlaw DS, Galati JC, Wheaton GR, Gentles TL, Grigg LE, et al. The extracardiac conduit Fontan procedure in Australia and New Zealand: hypoplastic left heart syndrome predicts worse early and late outcomes. Eur J Cardiothorac Surg. 2014;46(3):465–73.CrossRefGoogle Scholar
  13. 13.
    Bridges ND, Mayer JE Jr, Lock JE, Jonas RA, Hanley FL, Keane JF, et al. Effect of baffle fenestration on outcome of the modified Fontan operation. Circulation. 1992;86(6):1762–9.CrossRefGoogle Scholar
  14. 14.
    Lemler MS, Scott WA, Leonard SR, Stromberg D, Ramaciotti C. Fenestration improves clinical outcome of the fontan procedure: a prospective, randomized study. Circulation. 2002;105(2):207–12.CrossRefGoogle Scholar
  15. 15.
    Mavroudis C, Deal BJ. Fontan conversion: literature review and lessons learned over 20 years. World J Pediatr Cong Heart Surg. 2016;7(2):192–8.CrossRefGoogle Scholar
  16. 16.
    Deal BJ, Costello JM, Webster G, Tsao S, Backer CL, Mavroudis C. Intermediate-term outcome of 140 consecutive Fontan conversions with arrhythmia operations. Ann Thorac Surg. 2016;101(2):717–24.CrossRefGoogle Scholar
  17. 17.
    Moodie DS, Ritter DG, Tajik AJ, O’Fallon WM. Long-term follow-up in the unoperated univentricular heart. Am J Cardiol. 1984;53(8):1124–8.CrossRefGoogle Scholar
  18. 18.
    Poterucha JT, Anavekar NS, Egbe AC, Julsrud PR, Connolly HM, Ammash NM, et al. Survival and outcomes of patients with unoperated single ventricle. Heart. 2016;102(3):216–22.CrossRefGoogle Scholar
  19. 19.
    Abdelbar A, Mahadevan VS, Austin C, Hoschtitzky JA. Late bidirectional Glenn anastomosis in a 54-year-old patient with unoperated functionally univentricular heart. World J Pediatr Cong Heart Surg. 2013;4(4):444–6.CrossRefGoogle Scholar
  20. 20.
    Forsdick V, Iyengar AJ, Carins T, Gentles TL, Weintraub RG, Celermajer DS, et al. Unsatisfactory early and late outcomes after Fontan surgery delayed to adolescence and adulthood. Semin Thorac Cardiovasc Surg. 2015;27(2):168–74.CrossRefGoogle Scholar
  21. 21.
    Collins RT 2nd, Doshi P, Onukwube J, Fram RY, Robbins JM. Risk factors for increased hospital resource utilization and in-hospital mortality in adults with single ventricle congenital heart disease. Am J Cardiol. 2016;118(3):453–62.CrossRefGoogle Scholar
  22. 22.
    Cedars A, Benjamin L, Vyhmeister R, Harris K, Bradley EA, Wadia S, et al. Contemporary hospitalization rate among adults with complex congenital heart disease. World J Pediatr Cong Heart Surg. 2016;7(3):334–43.CrossRefGoogle Scholar
  23. 23.
    Seckeler MD, Moe TG, Thomas ID, Meziab O, Andrews J, Heller E, et al. Hospital resource utilization for common noncardiac diagnoses in adult survivors of single cardiac ventricle. Am J Cardiol. 2015;116(11):1756–61.CrossRefGoogle Scholar
  24. 24.
    Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2008;118(23):e714–833.PubMedGoogle Scholar
  25. 25.
    Atz AM, Zak V, Mahony L, Uzark K, D'Agincourt N, Goldberg DJ, et al. Longitudinal outcomes of patients with single ventricle after the Fontan procedure. J Am Coll Cardiol. 2017;69(22):2735–44.CrossRefGoogle Scholar
  26. 26.
    Costello JM, Mazwi ML, McBride ME, Gambetta KE, Eltayeb O, Epting CL. Critical care for paediatric patients with heart failure. Cardiol Young. 2015;25(Suppl 2):74–86.CrossRefGoogle Scholar
  27. 27.
    Costello JM, Dunbar-Masterson C, Allan CK, Gauvreau K, Newburger JW, McGowan FX Jr, et al. Impact of empiric nesiritide or milrinone infusion on early postoperative recovery after Fontan surgery: a randomized, double-blind, placebo-controlled trial. Circ Heart Fail. 2014;7(4):596–604.CrossRefGoogle Scholar
  28. 28.
    Bronicki RA, Anas NG. Cardiopulmonary interaction. Pediatr Crit Care Med. 2009;10(3):313–22.CrossRefGoogle Scholar
  29. 29.
    Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington AN. Cardiopulmonary interactions after Fontan operations: augmentation of cardiac output using negative pressure ventilation. Circulation. 1997;96(11):3934–42.CrossRefGoogle Scholar
  30. 30.
    Mossad EB, Motta P, Vener DF. Anesthetic considerations for adults undergoing Fontan conversion surgery. Anesthesiol Clin. 2013;31(2):405–19.CrossRefGoogle Scholar
  31. 31.
    Bradley SM, Simsic JM, Mulvihill DM. Hyperventilation impairs oxygenation after bidirectional superior cavopulmonary connection. Circulation. 1998;98(19 Suppl):II372–6.PubMedGoogle Scholar
  32. 32.
    Bradley SM, Simsic JM, Mulvihill DM. Hypoventilation improves oxygenation after bidirectional superior cavopulmonary connection. J Thorac Cardiovasc Surg. 2003;126:1033–9.CrossRefGoogle Scholar
  33. 33.
    Ohuchi H, Yasuda K, Miyazaki A, Ono S, Hayama Y, Negishi J, et al. Prevalence and predictors of haemostatic complications in 412 Fontan patients: their relation to anticoagulation and haemodynamics. Eur J Cardiothorac Surg. 2015;47(3):511–9.CrossRefGoogle Scholar
  34. 34.
    Allen KY, Downing TE, Glatz AC, Rogers LS, Ravishankar C, Rychik J, et al. Effect of Fontan-associated morbidities on survival with intact Fontan circulation. Am J Cardiol. 2017;119(11):1866–71.CrossRefGoogle Scholar
  35. 35.
    Larue M, Gossett JG, Stewart RD, Backer CL, Mavroudis C, Jacobs ML. Plastic bronchitis in patients with Fontan physiology: review of the literature and preliminary experience with fontan conversion and cardiac transplantation. World J Pediatr Cong Heart Surg. 2012;3(3):364–72.CrossRefGoogle Scholar
  36. 36.
    Singhi AK, Vinoth B, Kuruvilla S, Sivakumar K. Plastic bronchitis. Ann Pediatr Cardiol. 2015;8(3):246–8.CrossRefGoogle Scholar
  37. 37.
    Costello JM, Steinhorn D, McColley S, Gerber ME, Kumar SP. Treatment of plastic bronchitis in a Fontan patient with tissue plasminogen activator: a case report and review of the literature. Pediatrics. 2002;109(4):e67.CrossRefGoogle Scholar
  38. 38.
    Avitabile CM, Goldberg DJ, Dodds K, Dori Y, Ravishankar C, Rychik J. A multifaceted approach to the management of plastic bronchitis after cavopulmonary palliation. Ann Thorac Surg. 2014;98(2):634–40.CrossRefGoogle Scholar
  39. 39.
    Shah SS, Drinkwater DC, Christian KG. Plastic bronchitis: is thoracic duct ligation a real surgical option? Ann Thorac Surg. 2006;81(6):2281–3.CrossRefGoogle Scholar
  40. 40.
    Itkin M. Lymphatic intervention techniques: look beyond thoracic duct embolization. J Vasc Interv Radiol. 2016;27(8):1187–8.CrossRefGoogle Scholar
  41. 41.
    Dori Y, Keller MS, Rome JJ, Gillespie MJ, Glatz AC, Dodds K, et al. Percutaneous lymphatic embolization of abnormal pulmonary lymphatic flow as treatment of plastic bronchitis in patients with congenital heart disease. Circulation. 2016;133(12):1160–70.CrossRefGoogle Scholar
  42. 42.
    Gossett JG, Almond CS, Kirk R, Zangwill S, Richmond ME, Kantor PF, et al. Outcomes of cardiac transplantation in single-ventricle patients with plastic bronchitis: a multicenter study. J Am Coll Cardiol. 2013;61(9):985–6.CrossRefGoogle Scholar
  43. 43.
    John AS, Johnson JA, Khan M, Driscoll DJ, Warnes CA, Cetta F. Clinical outcomes and improved survival in patients with protein-losing enteropathy after the Fontan operation. J Am Coll Cardiol. 2014;64(1):54–62.CrossRefGoogle Scholar
  44. 44.
    Binotto MA, Maeda NY, Lopes AA. Altered endothelial function following the Fontan procedure. Cardiol Young. 2008;18(1):70–4.CrossRefGoogle Scholar
  45. 45.
    Silvilairat S, Cabalka AK, Cetta F, Grogan M, Hagler DJ, O'Leary PW. Protein-losing enteropathy after the Fontan operation: associations and predictors of clinical outcome. Congenit Heart Dis. 2008;3(4):262–8.CrossRefGoogle Scholar
  46. 46.
    Backer CL, Russell HM, Pahl E, Monge MC, Gambetta K, Kindel SJ, et al. Heart transplantation for the failing Fontan. Ann Thorac Surg. 2013;96(4):1413–9.CrossRefGoogle Scholar
  47. 47.
    Wu FM, Kogon B, Earing MG, Aboulhosn JA, Broberg CS, John AS, et al. Liver health in adults with Fontan circulation: a multicenter cross-sectional study. J Thorac Cardiovasc Surg. 2017;153(3):656–64.CrossRefGoogle Scholar
  48. 48.
    Goldberg DJ, Surrey LF, Glatz AC, Dodds K, O'Byrne ML, Lin HC, et al. Hepatic fibrosis is universal following Fontan operation, and severity is associated with time from surgery: a liver biopsy and hemodynamic study. J Am Heart Assoc. 2017;6(5):e004809.CrossRefGoogle Scholar
  49. 49.
    Egbe AC, Connolly HM, Niaz T, Yogeswaran V, Taggart NW, Qureshi MY, et al. Prevalence and outcome of thrombotic and embolic complications in adults after Fontan operation. Am Heart J. 2017;183:10–7.CrossRefGoogle Scholar
  50. 50.
    Gewillig M. The Fontan circulation. Heart. 2005;91(6):839–46.CrossRefGoogle Scholar
  51. 51.
    Broomall E, McBride ME, Deal BJ, Ducharme-Crevier L, Shaw A, Mazwi M, et al. Posterior circulation ischemia or occlusion in five adults with failing Fontan circulation. Ann Thorac Surg. 2016;101(6):2315–20.CrossRefGoogle Scholar
  52. 52.
    Neumar RW, Shuster M, Callaway CW, Gent LM, Atkins DL, Bhanji F, et al. Part 1: executive summary: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S315–67.CrossRefGoogle Scholar
  53. 53.
    Marino BS, Tibby SM, Hoffman GM. Resuscitation of the patient with the functionally univentricular heart. Curr Pediatr Rev. 2013;9(2):148–57.CrossRefGoogle Scholar
  54. 54.
    Booth KL, Roth SJ, Thiagarajan RR, Almodovar MC, del Nido PJ, Laussen PC. Extracorporeal membrane oxygenation support of the Fontan and bidirectional Glenn circulations. Ann Thorac Surg. 2004;77(4):1341–8.CrossRefGoogle Scholar
  55. 55.
    Arnaoutakis GJ, Blitzer D, Fuller S, Eckhauser AW, Montenegro LM, Rossano JW, et al. Mechanical circulatory support as bridge to transplantation for the failing single ventricle. Ann Thorac Surg. 2017;103(1):193–7.CrossRefGoogle Scholar
  56. 56.
    Matsuda H, Fukushima N, Ichikawa H, Sawa Y. Orthotropic heart transplantation for adult congenital heart disease: a case with heterotaxy and dextrocardia. Gen Thorac Cardiovasc Surg. 2017;65(1):47–51.CrossRefGoogle Scholar
  57. 57.
    Hill AL, Maeda K, Bonham CA, Concepcion W. Pediatric combined heart-liver transplantation performed en bloc: a single-center experience. Pediatr Transplant. 2012;16(4):392–7.CrossRefGoogle Scholar
  58. 58.
    Hollander SA, Reinhartz O, Maeda K, Hurwitz M, D NR, Bernstein D. Intermediate-term outcomes after combined heart-liver transplantation in children with a univentricular heart. J Heart Lung Transplant. 2013;32(3):368–70.CrossRefGoogle Scholar
  59. 59.
    Kelley JR, Mack GW, Fahey JT. Diminished venous vascular capacitance in patients with univentricular hearts after the Fontan operation. Am J Cardiol. 1995;76(3):158–63.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Mina Hafzalah
    • 1
    Email author
  • John M. Costello
    • 2
    • 3
  • Carl L. Backer
    • 4
    • 5
  • R. Andrew de Freitas
    • 2
    • 6
    • 7
  • Constantine Mavroudis
    • 8
    • 9
  1. 1.Division of Pediatric Critical Care MedicineChildren’s Hospital of Illinois/UICOMPPeoriaUSA
  2. 2.Department of PediatricsMedical University of South CarolinaCharlestonUSA
  3. 3.Department of Pediatric CardiologyMedical University of South Carolina Children’s HospitalCharlestonUSA
  4. 4.Department of SurgeryNorthwestern University Feinberg School of MedicineChicagoUSA
  5. 5.Cardiovascular-Thoracic SurgeryAnn & Robert H. Lurie Children’s Hospital of ChicagoChicagoUSA
  6. 6.Adult Congenital Heart Disease ServiceAnn & Robert H. Lurie Children’s Hospital of ChicagoChicagoUSA
  7. 7.Bluhm Cardiovascular Institute, Northwestern Memorial HospitalChicagoUSA
  8. 8.Department of SurgeryJohns Hopkins University School of MedicineBaltimoreUSA
  9. 9.Johns Hopkins Children’s Heart SurgeryFlorida Hospital for ChildrenOrlandoUSA

Personalised recommendations