Advertisement

Distribution of Air: Ventilation Distribution and Heterogeneity

  • Gregory King
  • Sylvia Verbanck
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

As air is breathed in, it follows a complex pathway of branching airways on its way to the alveolar spaces of the lung. Two basic regions of ventilation are recognized, one that participates in gas exchange, the alveolar ventilation, and one that serves as the conduit for air to reach the gas exchange region, the dead space ventilation. Ventilation is not evenly distributed throughout the lung. First, because of the weight of the lung, the more dependent regions of the lung are more compliant and therefore receive more ventilation than less dependent regions. Secondly, topographic ventilation heterogeneity also exists because of the varying time constants (resistance x compliance) scattered throughout the lung, resulting in fast and slow filling and emptying of different regions. This unevenness of ventilation can be detected by a variety of methods, but inert gas washout techniques, including single and multiple-breath nitrogen washout, are most common. This chapter will explore in more detail the physiology of ventilation heterogeneity, how it is measured, and what its implications may be for clinical medicine.

Keywords

Dead space Alveolar ventilation Ventilation distribution Ventilation heterogeneity Specific ventilation Multiple-breath nitrogen washout 

Selected References

  1. Bourdin A, Paganin F, Préfaut C, Kieseler D, Godard P, Chanez P. Nitrogen washout slope in poorly controlled asthma. Allergy. 2006;61(1):85–9.CrossRefPubMedCentralGoogle Scholar
  2. Buist AS, Ross BB. Predicted values for closing volume using a modified single breath nitrogen test. Am Rev Respir Dis. 1973a;107:744–52.PubMedPubMedCentralGoogle Scholar
  3. Buist AS, Ross BB. Quantitative analysis of the alveolar plateau in the diagnosis of early airway obstruction. Am Rev Respir Dis. 1973b;108(5):1078–87.PubMedPubMedCentralGoogle Scholar
  4. Buist AS, Ghezzo H, Anthonisen NR, Cherniack RM, Ducic S, Macklem PT, Manfreda J, Martin RR, McCarthy D, Ross BB. Relationship between the single-breath N test and age, sex, and smoking habit in three North American cities. Am Rev Respir Dis. 1979;120(2):305–18.PubMedPubMedCentralGoogle Scholar
  5. Downie S, Salome C, Verbanck S, Thompson B, Berend N, King G. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation. Thorax. 2007;62(8):684–9.CrossRefPubMedCentralGoogle Scholar
  6. Farah CS, King GG, Brown NJ, Downie SR, Kermode J, Hardaker KM, Peters MJ, Berend N, Salome CM. The role of the small airways in the clinical expression of asthma in adults. J Allergy Clin Immunol. 2012a;129(2):381–7.CrossRefPubMedCentralGoogle Scholar
  7. Farah CS, King GG, Brown NJ, Peters MJ, Berend N, Salome CM. Ventilation heterogeneity predicts asthma control in adults following inhaled corticosteroid dose titration. J Allergy Clin Immunol. 2012b;130(1):61–8.CrossRefPubMedCentralGoogle Scholar
  8. Farrow CE, Salome CM, Harris BE, Bailey DL, Bailey E, Berend N, Young IH, King GG. Airway closure on imaging relates to airway hyperresponsiveness and peripheral airway disease in asthma. J Appl Physiol. 2012;113(6):958–66.CrossRefPubMedCentralGoogle Scholar
  9. Farrow CE, Salome CM, Harris BE, Bailey DL, Berend N, King GG. Peripheral ventilation heterogeneity determines the extent of bronchoconstriction in asthma. J Appl Physiol. 2017;123(5):1188–94.CrossRefPubMedCentralGoogle Scholar
  10. Fowler WS. Lung function studies: II. The respiratory dead space. Am J Phys. 1948;154(3):405–16.Google Scholar
  11. Fowler WS. Lung function studies: III. Uneven pulmonary ventilation in normal subjects and in patients with pulmonary disease. J Appl Physiol. 1949;2:283.CrossRefPubMedCentralGoogle Scholar
  12. Hardaker KM, Downie SR, Kermode JA, Farah CS, Brown NJ, Berend N, King GG, Salome CM. The predictors of airway hyperresponsiveness differ between old and young asthmatics. Chest. 2011;139(6):1395–401.CrossRefPubMedCentralGoogle Scholar
  13. Harris RS, Winkler T, Tgavalekos N, Musch G, Melo MFV, Schroeder T, Chang Y, Venegas JG. Regional pulmonary perfusion, inflation, and ventilation defects in bronchoconstricted patients with asthma. Am J Respir Crit Care Med. 2006;174(3):245–53.CrossRefPubMedCentralGoogle Scholar
  14. In 't Veen JC, Beekman AJ, Bel EH, Sterk PJ. Recurrent exacerbations in severe asthma are associated with enhanced airway closure during stable episodes. Am J Respir Crit Care Med. 2000;161(6):1902–6.CrossRefPubMedCentralGoogle Scholar
  15. Jetmalani K, Thamrin C, Farah CS, Bertolin A, Berend N, Salome CM, King GG. Peripheral airway dysfunction and relationship with symptoms in smokers with preserved spirometry. Respirology. 2018;23(5):512–8.CrossRefPubMedCentralGoogle Scholar
  16. King GG, Eberl S, Salome CM, Meikle SR, Woolcock AJ. Airway closure measured by a Technegas bolus and SPECT. Am J Respir Crit Care Med. 1997;155(2):682–8.CrossRefPubMedCentralGoogle Scholar
  17. King GG, James A, Wark P. The pathophysiology of severe asthma: we’ve only just started. Respirology. 2018;23(3):262–71.CrossRefPubMedCentralGoogle Scholar
  18. Mathew L, Kirby M, Etemad-Rezai R, Wheatley A, McCormack D, Parraga G. Hyperpolarized (3)He magnetic resonance imaging: preliminary evaluation of phenotyping potential in chronic obstructive pulmonary disease. Eur J Radiol. 2011;79(1):140–6.CrossRefPubMedCentralGoogle Scholar
  19. McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, Wright AC, Gefter WB, Litzky L, Coxson HO, Paré PD, Sin DD, Pierce RA, Woods JC, McWilliams AM, Mayo JR, Lam SC, Cooper JD, Hogg JC. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365(17):1567–75.CrossRefPubMedCentralGoogle Scholar
  20. Milic-Emili J, Henderson JAM, Dolovich MB, Trop D, Kaneko K. Regional distribution of inspired gas in the lung. J Appl Physiol. 1966;21:749–59.CrossRefPubMedCentralGoogle Scholar
  21. Milic-Emili J, Torchio R, D’Angelo E. Closing volume: a reappraisal (1967–2007). Eur J Appl Physiol. 2007;99(6):567–83.CrossRefPubMedCentralGoogle Scholar
  22. Tanabe N, Vasilescu DM, McDonough JE, Kinose D, Suzuki M, Cooper JD, Paré PD, Hogg JC. MicroCT comparison of preterminal bronchioles in centrilobular and panlobular emphysema. Am J Respir Crit Care Med. 2017;195(5):630–8.CrossRefPubMedCentralGoogle Scholar
  23. Thurlbeck WM, Dunnill MS, Hartung W, Heard BE, Heppleston AG, Ryder RC. A comparison of three methods of measuring emphysema. Hum Pathol. 1970;1(2):215–26.CrossRefPubMedCentralGoogle Scholar
  24. Tzeng Y-S, Lutchen K, Albert M. The difference in ventilation heterogeneity between asthmatic and healthy subjects quantified using hyperpolarized 3He MRI. J Appl Physiol. 2009;106(3):813–22.CrossRefPubMedCentralGoogle Scholar
  25. Verbanck S, Paiva M. Gas mixing in the airways and airspaces. Compr Physiol. 2011;1:809–34.PubMedPubMedCentralGoogle Scholar
  26. Verbanck S, Schuermans D, Van Muylem A, Melot C, Noppen M, Vincken W, Paiva M. Conductive and acinar lung-zone contributions to ventilation inhomogeneity in COPD. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1573–7.CrossRefPubMedCentralGoogle Scholar
  27. Verbanck S, Schuermans D, Paiva M, Meysman M, Vincken W. Small airway function improvement after smoking cessation in smokers without airway obstruction. Am J Respir Crit Care Med. 2006;174(8):853–7.CrossRefPubMedCentralGoogle Scholar
  28. Verbanck S, Van Muylem A, Schuermans D, Bautmans I, Thompson B, Vincken W. Transfer factor, lung volumes, resistance and ventilation distribution in healthy adults. Eur Respir J. 2016;47:166–76.CrossRefPubMedCentralGoogle Scholar
  29. Verbanck S, King GG, Zhou W, Miller A, Thamrin C, Schuermans D, Ilsen B, Ernst CW, de Mey J, Vincken W, Vanderhelst E. The quantitative link of lung clearance index to bronchial segments affected by bronchiectasis. Thorax. 2018a;73(1):82–4.CrossRefPubMedCentralGoogle Scholar
  30. Verbanck S, King GG, Paiva M, Schuermans D, Vanderhelst E. The functional correlate of the loss of terminal bronchioles in COPD. Am J Respir Crit Care Med. 2018b.  https://doi.org/10.1164/rccm.201712-2366LE.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Woolcock Institute of Medical ResearchThe University of SydneySydneyAustralia
  2. 2.Respiratory DivisionUniversity Hospital, UZ BrusselBrusselsBelgium

Personalised recommendations