Advertisement

Bayesian Models for Ranking Data

  • Mayer Alvo
  • Philip L. H. Yu
Chapter
Part of the Springer Series in the Data Sciences book series (SSDS)

Abstract

Ranking data are often encountered in practice when judges (or individuals) are asked to rank a set of t items, which may be political goals, candidates in an election, types of food, etc. We see examples in voting and elections, market research, and food preference just to name a few. By studying ranking data, we can understand the judges’ perception and preferences on the ranked alternatives.

References

  1. Alvo, M. and Yu, P. L. H. (2014). Statistical Methods for Ranking Data. Springer.CrossRefGoogle Scholar
  2. Banerjee, A., Dhillon, I. S., Ghosh, J., and Sra, S. (2005). Clustering on the unit hypersphere using von Mises-Fisher distributions. Journal of Machine Learning Research, 6(Sep):1345–1382.MathSciNetzbMATHGoogle Scholar
  3. Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518):859–877.MathSciNetCrossRefGoogle Scholar
  4. Diaconis, P. (1988a). Group Representations in Probability and Statistics. Institute of Mathematical Statistics, Hayward.Google Scholar
  5. Kamishima, T. (2003). Nantonac collaborative filtering: recommendation based on order responses. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 583–588. ACM.Google Scholar
  6. Kidwell, P., Lebanon, G., and Cleveland, W. S. (2008). Visualizing incomplete and partially ranked data. IEEE Transactions on Visualization and Computer Graphics, 14(6):1356–1363.CrossRefGoogle Scholar
  7. Nunez-Antonio, G. and Gutiérrez-Pena, E. (2005). A Bayesian analysis of directional data using the von Mises–Fisher distribution. Communications in Statistics-Simulation and Computation, 34(4):989–999.MathSciNetCrossRefGoogle Scholar
  8. Sra, S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of i s (x). Computational Statistics, 27(1):177–190.MathSciNetCrossRefGoogle Scholar
  9. Taghia, J., Ma, Z., and Leijon, A. (2014). Bayesian estimation of the von-Mises Fisher mixture model with variational inference. IEEE transactions on pattern analysis and machine intelligence, 36(9):1701–1715.CrossRefGoogle Scholar
  10. Xu, H., Alvo, M., and Yu, P. L. H. (2018). Angle-based models for ranking data. Computational Statistics and Data Analysis, 121:113–136.MathSciNetCrossRefGoogle Scholar
  11. Yu, P. L. H., Lam, K. F., and Lo, S. M. (2005). Factor analysis for ranked data with application to a job selection attitude survey. Journal of the Royal Statistical Society Series A, 168(3):583–597.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mayer Alvo
    • 1
  • Philip L. H. Yu
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of OttawaOttawaCanada
  2. 2.Department of Statistics and Actuarial ScienceUniversity of Hong KongHong KongChina

Personalised recommendations