Advertisement

Molecular Aspects of Species of the Genus Aedes with Epidemiological Importance

  • Luciana Patrícia Lima Alves Pereira
  • Felipe Bastos Araruna
  • Fernanda Oliveira Sousa Araruna
  • Maria Cristiane Aranha Brito
  • Daniella Patrícia Brandão Silveira
  • Edilene Carvalho Gomes Ribeiro
  • Antônio Carlos Romão Borges
  • Marcelo Souza de Andrade
  • Emygdia Rosa do Rêgo Barros Pires Leal
  • Denise Fernandes Coutinho
Chapter
Part of the Parasitology Research Monographs book series (Parasitology Res. Monogr., volume 10)

Abstract

Some species of the genus Aedes stand out as vectors of several major viruses that affect the world by transmitting serious diseases, including malaria, dengue, yellow fever, Zika, and chikungunya. With the dissemination of arboviruses, there is a constant search for new methods to control such diseases and their vectors. In this regard, the fields of genetics and molecular biology have presented promising alternatives while clarifying questions on the transmittance potential of vectors and the differences among species that arise from their genetic variability. Knowledge of intraspecific and interspecific differences may provide tools to devise new insecticides and to elucidate factors that determine resistance against available insecticides. This chapter deals with molecular aspects of the species of the genus Aedes that has immense epidemiological importance; we have addressed subjects, including the genome, vector competence of Aedes aegypti, and genetic variability of species of this genus detected by the molecular markers; in addition, genetic controls, which consist of dissemination of factors or genes that reduce the propagation of the virus transmitted by the insect through mating or genetic inheritance, have also been addressed in this chapter.

Keywords

Mosquitoes Aedes Genetics Molecular markers Public health 

References

  1. Alphey L (2002) Re-engineering the sterile insect technique. Insect Biochem Mol Biol 32:1243–1247CrossRefGoogle Scholar
  2. Alphey L, Andreasen M (2002) Dominant lethality and insect population control. Mol Biochem Parasitol 121:173–178CrossRefGoogle Scholar
  3. Alphey N, Bonsall MB (2017) Genetics-based methods for agricultural insect pest management. Agric Forest Entomol.  https://doi.org/10.1111/afe.12241 CrossRefGoogle Scholar
  4. Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW et al (2010) Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis 10:295–311.  https://doi.org/10.1089/vbz.2009.0014 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alphey L, McKemey A, Nimmo D, Oviedo MN, Lacroix R, Matzen K et al (2013) Genetic control of Aedes mosquitoes. Pathog Glob Health 107:170–179.  https://doi.org/10.1179/2047773213Y.0000000095 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Araújo HRC, Carvalho DO, Ioshino RS, Costa-da-Silva AL, Capurro ML (2015) Aedes aegypti control strategies in Brazil: incorporation of new technologies to overcome the persistence of dengue epidemics. Insects 6:576–594.  https://doi.org/10.3390/insects6020576 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ayres CFJ, Romão TPA, Melo-Santos MAV, Furtado AF (2002) Genetic diversity of Brazilian populations of Aedes albopictus. Mem Inst Oswaldo Cruz 97:871–875CrossRefGoogle Scholar
  8. Barbara AAM, Adna CBS, Anete PS, Vera MS (2014) Temporal genetic structure of major dengue vector Aedes aegypti from Manaus, Amazonas. Brazil Acta Trop 134:80–88CrossRefGoogle Scholar
  9. Barillas-Mury C, Wizel B, Han YS (2000) Mosquito immune responses and malaria transmission: lessons from insect model systems and implications for vertebrate innate immunity and vaccine development. Insect Biochem Mol Biol 30:429–442CrossRefGoogle Scholar
  10. Becker N, Petrić D, Zgomba M, Boase C, Madon MB, Dahl C et al (2010) Mosquitoes and their control, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  11. Bellini R, Medici A, Puggioli A, Balestrino F, Carrieri M (2013) Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J Med Entomol 50:317–325.  https://doi.org/10.1603/ME12048 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bello F, Becerra V (2009) Genetic variability and heterogeneity of Venezuelan equine encephalitis virus vector Ochlerotatus taeniorhynchus (Diptera: Culicidae) populations of the Colombian Atlantic coast, based on microsatellite loci. Genet Mol Res 8:1179–1190CrossRefGoogle Scholar
  13. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al (2013) The global distribution and burden of dengue. Nature 496:504–507.  https://doi.org/10.1038/nature12060 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Black WC, Bennett KE, Gorrochótegui-Escalante N, Barillas-Mury CV, Fernandez-Salas I, De Lourdes MM et al (2002) Flavivirus susceptibility in Aedes aegypti. Arch Med Res 33:379–388CrossRefGoogle Scholar
  15. Bosio CF, Harrington LC, Jones JW, Sithiprasasna R, Norris DE, Scott TW (2005) Genetic structure of Aedes aegypti populations in Thailand using mitochondrial DNA. Am J Trop Med Hyg 72:434–442CrossRefGoogle Scholar
  16. Bouquillard E, Fianu A, Bangil M, Charlette N, Ribéra A, Michault A et al (2018) Rheumatic manifestations associated with chikungunya virus infection: a study of 307 patients with 32-month follow-up (RHUMATOCHIK study). Joint Bone Spine 85(2):207–210.  https://doi.org/10.1016/j.jbspin.2017.01.014 CrossRefPubMedGoogle Scholar
  17. Bracco JE, Capurro ML, Lourenço-de-Oliveira R, Sallum MAM (2007) Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene: evidence of multiple introductions. Mem Inst Oswaldo Cruz 102:573–580CrossRefGoogle Scholar
  18. Cao-Lormeau VM, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J et al (2016) Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387:1531–1539.  https://doi.org/10.1016/S0140-6736(16)00562-6 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Carvalho DO, Costa-da-Silva AL, Lees RS, Capurro ML (2014) Two step male release strategy using transgenic mosquito lines to control transmission of vector-borne diseases. Acta Trop 132S:S170–S177.  https://doi.org/10.1016/j.actatropica.2013.09.023 CrossRefGoogle Scholar
  20. Carvalho DO, McKemey AR, Garziera L, Lacroix R, Donnelly CA, Alphey L et al (2015) Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl Trop Dis 9:1–15.  https://doi.org/10.1371/journal.pntd.0003864 CrossRefGoogle Scholar
  21. Consoli RAGB, Oliveira RL (1994) Principais mosquitos de importância sanitária no Brasil. Editora FIOCRUZ, Rio de Janeiro. 228p. ISBN 85-85676-03-5CrossRefGoogle Scholar
  22. David WS, Dennis LK, Marcelo BS, Brendan JL (2004) Aedes aegypti genomics. Insect Biochem Mol Biol 34:715–721CrossRefGoogle Scholar
  23. Devicari M, Suesdek L (2010) Caracterização populacional de Aedes scapularis (Diptera; Culicidae): aspectos moleculares, morfométricos e morfológicos. In: Congresso Brasileiro de Genética, 56. São PauloGoogle Scholar
  24. Dickens BL, Yang J, Cook AR, Carrasco LR (2016) Time to empower release of insects carrying a dominant lethal and Wolbachia against Zika. Open Forum Infect Dis 3(2):ofw103.  https://doi.org/10.1093/ofid/ofw103 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Enciclopédia Britânica (2017) https://www.britannica.com/animal/Aedes. Accessed 10 Nov 2017
  26. Esteva L, Yang HM (2006) Control of dengue vector by the sterile insect technique considering logistic recruitment. TEMA Tend Math Appl Comput 7:259–268Google Scholar
  27. Fagerberg AJ, Fulton RE, Black WC (2001) Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick, ixodes scapularis and the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 10:225–236CrossRefGoogle Scholar
  28. FAO/IAEA (2017) Sterile insect technique. http://www-naweb.iaea.org/nafa/ipc/sterile-insect-technique.html. Accessed 23 Oct 2017
  29. Garziera L, Pedrosa MC, Souza FA, Gómez M, Moreira MB, Virginio JF et al (2017) Effect of interruption of over-flooding releases of transgenic mosquitoes over wild population of Aedes aegypti: two case studies in Brazil. Entomol Exp Appl 164:327–339.  https://doi.org/10.1111/eea.12618 CrossRefGoogle Scholar
  30. Gato R, Companioni A, Bruzón RY, Menéndez Z, González A, Rodríguez M (2014) Release of thiotepa sterilized males into caged populations of Aedes aegypti: life table analysis. Acta Trop 132S:S164–S169.  https://doi.org/10.1016/j.actatropica.2013.09.024 CrossRefGoogle Scholar
  31. Golding N, Wilson AL, Moyes CL, Cano J, Pigott DM, Velayudhan R et al (2015) Integrating vector control across diseases. BMC Med 13:1–6.  https://doi.org/10.1186/s12916-015-0491-4 CrossRefGoogle Scholar
  32. Gubler DJ (2011) Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop Med Health 39:3–11.  https://doi.org/10.2149/tmh.2011-S05 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Harris AF, Nimmo D, McKemey AR, Kelly N, Scaife S, Donnelly CA et al (2011) Field performance of engineered male mosquitoes. Nat Biotechnol 29:1034–1037.  https://doi.org/10.1038/nbt.2019 CrossRefPubMedGoogle Scholar
  34. Hendrichs J (2017) Use of the sterile insect technique against key insect pests. http://programamoscamed.mx/EIS/biblioteca/libros/articulos/Hendrichs,JP_sin%20fecha_2%20.pdf. Accessed 23 Oct 2017
  35. Kowalski H (2007) Scientists at J. Craig Venter Institute publish draft genome sequence from Aedes aegypti, mosquito responsible for yellow fever, dengue fever. J. Craig Venter InstituteGoogle Scholar
  36. Lance DR, Mcinnis DO (2005) Biological basis of the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique principles and practice in area-wide integrated pest management. Springer, Vienna, pp 69–94Google Scholar
  37. Lin X, Wang G (2015) Development of a RNAi-based release of insects carrying a dominant lethal (RIDL) system in Drosophila melanogaster. Sci Bull 60:356–362.  https://doi.org/10.1007/s11434-014-0667-x CrossRefGoogle Scholar
  38. Lowenberger C (2013) Innate immune response of Aedes aegypti. Insect Biochem Mol Biol 1:219–229Google Scholar
  39. Maia RT (2008) Genética de populações de Aedes albopictus (Diptera: culicidae) (Skuse,1894) da cidade de Manaus, AM, Brasil com o emprego do gene ND5 do DNA mitocondrial-Manaus. p 51Google Scholar
  40. Massonnet-Bruneel B, Corre-Catelin N, Lacroix R, Lees RS, Hoang KP, Nimmo D et al (2013) Fitness of transgenic mosquito Aedes aegypti males carrying a dominant lethal genetic system. PLoS One 8:e62711.  https://doi.org/10.1371/journal.pone.0062711 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Miller BR, Mitchell CJ (1991) Genetic selection of a flavivirusrefractory strain of the yellow fever mosquito Aedes aegypti. Am J Trop Med Hyg 45:399–407CrossRefGoogle Scholar
  42. Morlais I, Severson DW (2003) Intraspecific DNA variation in nuclear genes of the mosquito Aedes aegypti. Insect Mol Biol 12:631–639CrossRefGoogle Scholar
  43. Nene V, Jennifer RW, Daniel L, Brian H, Chinnappa K et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723CrossRefGoogle Scholar
  44. Nordin O, Donald W, Ming WH, Ney TG, Mohamed KA, Halim NAA et al (2013) Oral ingestion of transgenic RIDL Ae. aegypti larvae has no negative effect on two predator Toxorhynchites species. PLoS One 8:1–7.  https://doi.org/10.1371/journal.pone.0058805 CrossRefGoogle Scholar
  45. Oliva CF, Jacquet M, Gilles J, Lemperiere G, Maquart PO, Quilici S et al (2012) The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: mating vigour of sterilized males. PLoS One 7:1–8CrossRefGoogle Scholar
  46. Oliveira SL, Carvalho DO, Capurro ML (2011) Mosquito transgênico: do paper para a realidade. Rev Biol 6b:38–43Google Scholar
  47. Paduan KS, Ribolla PEM (2008) Mitochondrial DNA polymorphism and heteroplasmy in populations of Aedes aegypti in Brazil. J Med Entomol 45:59–67CrossRefGoogle Scholar
  48. Paduan KS, Araújo-Júnior JP, Ribolla PEM (2006) Genetic variability in geographical populations of Aedes aegypti (Diptera, Culicidae) in Brazil elucidated by molecular markers. Genet Mol Biol 29:391–395CrossRefGoogle Scholar
  49. Reeves RG, Denton JA, Santucci F, Bryk J, Reed FA (2012) Scientific standards and the regulation of genetically modified insects. PLoS Negl Trop Dis 6:1–15.  https://doi.org/10.1371/journal.pntd.0001502 CrossRefGoogle Scholar
  50. Sayson SL, Gloria-Soria A, Powell JR, Edillo FE (2015) Seasonal genetic changes of Aedes aegypti (Diptera: Culicidae) populations in selected sites of Cebu City. Philippines J Med Entomol 52:638–646.  https://doi.org/10.1093/jme/tjv056 CrossRefPubMedGoogle Scholar
  51. Schaffner F, Mathis A (2014) Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future. Lancet Infect Dis 14:1271–1280.  https://doi.org/10.1016/S1473-3099(14)70834-5 CrossRefPubMedGoogle Scholar
  52. Severson DW, Mori A, Zhang Y, Christensen BM (1993) Linkage map for Aedes aegypti using restriction fragment length polymorphisms. J Hered 84:241–247CrossRefGoogle Scholar
  53. Severson DW, Meece JK, Lovin DD, Saha G, Morlais I (2002) Linkage map organization of expressed sequence tags and sequence tagged sites in the mosquito, Aedes aegypti. Insect Mol Biol 1:371–378CrossRefGoogle Scholar
  54. Shelly TE, Mcinnis DO, Rodd C, Edu J, Pahio E (2007) Sterile insect technique and Mediterranean fruit fly (Diptera: Tephritidae): assessing the utility of aromatherapy in a Hawaiian coffee field. J Econ Entomol 100:273–282CrossRefGoogle Scholar
  55. Sousa GB, Blanco A, Gardenal CM (2001) Genetic relationships among Aedes aegypti (Diptera: Culicidae) populations from Argentina using random amplified polymorphic DNA polymerase chain reaction markers. J Med Entomol 38:371–375.  https://doi.org/10.1603/0022-2585-38.3.371 CrossRefPubMedGoogle Scholar
  56. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ et al (2016) The global burden of dengue: an analysis from the global burden of disease study 2013. Lancet Infect Dis 16:712–723.  https://doi.org/10.1016/S1473-3099(16)00026-8 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Staples JE, Fischer M (2014) Chikungunya virus in the Americas-what a vectorborne pathogen can do. N Engl J Med 371:887–889.  https://doi.org/10.1056/NEJMp1407698 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Staples JE, Breiman RF, Powers AM (2009) Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin Infect Dis 49:942–948.  https://doi.org/10.1086/605496 CrossRefPubMedGoogle Scholar
  59. Sukonthabhirom S, Saengtharatip S, Jirakanchanakit N, Rongnoparut P, Yoksan S, Daorai A, Chareonviriyaphap T (2009) Genetic structure among Thai populations of Aedes aegypti mosquitoes. J Vector Ecol 34:43–49.  https://doi.org/10.3376/038.034.0106 CrossRefPubMedGoogle Scholar
  60. Thomas DD, Donnelly CA, Wood RJ, Alphey LS (2000) Insect population control using a dominant, repressible, lethal genetic system. Science 287:2474–2476CrossRefGoogle Scholar
  61. Tien TK, Vazeille-Falcoz M, Mousson L, Huong TH, Rodhain F, Huong NT et al (1999) Aedes aegypti in Ho Chi Minh City (Viet Nam): susceptibility to dengue 2 virus and genetic differentiation. Trans R Soc Trop Med Hyg 93:581–586CrossRefGoogle Scholar
  62. Urbanelli S, Bellini R, Carrieri M, Salicandro P, Cellis G (2000) Population structure of Aedes albopictus (Skuse): the mosquito which is colonizing Mediterranean countries. Heredity 84:331–337CrossRefGoogle Scholar
  63. Vreysen MJB, Hendrichs J, Enkerlin WR (2006) The sterile insect technique as a component of sustainable area-wide integrated pest management of selected horticultural insect pests. J Fruit Ornam Plant Res 14:107–131Google Scholar
  64. Wallis GP, Aitken TH, Beaty BJ, Lorenz L, Amato GD, Tabachnick WJ (1985) Selection for susceptibility and refractoriness of Aedes aegypti to oral infection with yellow fever virus. Am J Trop Med Hyg 34:1225–1231CrossRefGoogle Scholar
  65. Whitfield ZJ, Dolan PT, Kunitomi M, Tassetto M, Seetin MG, Oh S et al (2017) The diversity, structure, and function of heritable adaptive immunity sequences in the Aedes aegypti genome. Curr Biol 27:3511–3519.  https://doi.org/10.1016/j.cub.2017.09.067 CrossRefPubMedGoogle Scholar
  66. WHO (2011) Preparedness and response for chikungunya virus introduction in the Americas. Pan American Health Organization, Washington, DC. http://www.paho.org/hq/index.php?option=com_docman&task=doc_download&gid=16984&Itemid=&lang=en. Accessed 12 Nov 2017
  67. WHO (2013) TDR global alert e response dengue/dengue haemorrhagic fever. World Health Organization, Genebra. http://www.who.int/csr/disease/dengue/en/index.html. Accessed 12 Nov 2017
  68. WHO (2016) Dengue. World Health Organization, Geneva. http://www.who.int/denguecontrol/epidemiology/en/. Accessed 12 Nov 2017
  69. Wilke ABB, Marrelli MT (2012) Genetic control of mosquitoes: population suppression strategies. Rev Inst Med Trop Sao Paulo 54:287–292.  https://doi.org/10.1590/S0036-46652012000500009 CrossRefPubMedGoogle Scholar
  70. Wilke ABB, Gomes AC, Natal D, Marrelli MT (2009) Controle de vetores utilizando mosquitos geneticamente modificados. Rev Saúde Pública 43:869–874CrossRefGoogle Scholar
  71. Winskill P, Harris AF, Morgan SA, Stevenson J, Raduan N, Alphey L et al (2014) Genetic control of Aedes aegypti: data-driven modelling to assess the effect of releasing different life stages and the potential for long-term suppression. Parasit Vectors 7:1–11CrossRefGoogle Scholar
  72. Zara ALSA, Santos SM, Fernandes-Oliveira ES, Carvalho RG, Coelho GE (2016) Estratégias de controle do Aedes aegypti: uma revisão. Epidemiol Serv Saude 25:391–404.  https://doi.org/10.5123/S1679-49742016000200017 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luciana Patrícia Lima Alves Pereira
    • 1
  • Felipe Bastos Araruna
    • 1
    • 2
  • Fernanda Oliveira Sousa Araruna
    • 1
  • Maria Cristiane Aranha Brito
    • 1
  • Daniella Patrícia Brandão Silveira
    • 3
  • Edilene Carvalho Gomes Ribeiro
    • 1
  • Antônio Carlos Romão Borges
    • 1
  • Marcelo Souza de Andrade
    • 1
    • 4
  • Emygdia Rosa do Rêgo Barros Pires Leal
    • 1
    • 4
  • Denise Fernandes Coutinho
    • 1
    • 3
  1. 1.Programa de Pós-Graduação em Biotecnologia da Rede RenorbioUniversidade Federal do MaranhãoSão LuísBrazil
  2. 2.Universidade Federal do PiauíParnaíbaBrazil
  3. 3.Programa de Pós-Graduação em Ciências da SaúdeUniversidade Federal do MaranhãoSão LuísBrazil
  4. 4.Laboratório de Estudos Genômicos e Histocompatibilidade—LEGHHospital Universitário da Universidade Federal do MaranhãoSão LuísBrazil

Personalised recommendations