Advertisement

Using SAR Data for an Assessment of the Indonesian Coastal Environment

  • Martin Gade
  • Bernhard Mayer
  • Carolin Meier
  • Thomas Pohlmann
  • Mutiara Putri
  • Agus Setiawan
Chapter

Abstract

This Pilot Study aimed at improving the information on the state of the Indonesian marine environment that is gained from satellite data. More than 2000 historical and actual synthetic aperture radar (SAR) images from ENVISAT ASAR and Sentinel-1A C-SAR, respectively, were used to produce oil pollution density maps of two regions of interest (ROIs) in Indonesian waters. The normalised spill number and the normalised mean polluted area indicate that in general, the marine oil pollution in both ROIs is of different origin: while ship traffic appears to be the main source in the Java Sea, oil production industry causes the highest pollution rates in the Strait of Makassar. In most cases hot spots of marine oil pollution were found in the open sea, and the largest number of oil spills in the Java Sea was found from March to May and from September to December, i.e., during the transition from north-west monsoon to south-east monsoon, and vice versa. This is when the overall wind and current patterns change, apparently making oil pollution detection with SAR sensors easier. In support of our SAR image analyses high-resolution numerical forward and backward tracer experiments were performed. Using the previously gained information we demonstrate that the combination of numerical tracer modelling with (visual) SAR image analyses can be used for an assessment of the marine environment in Indonesian waters, and also helps in better understanding the observed seasonality.

Keywords

SAR Coral Triangle Indonesia Oil spill Numerical modelling Tracer Marine pollution Java Sea Makassar Strait 

Notes

Acknowledgements

Franziska Leverenz and Anja Berger analysed the ASAR data. The pilot study IndoNACE received funding from the European Space Agency (ESA) under contract ITT AO 1-8176/14/F/MOS. The ENVISAT ASAR imagery was kindly made available by ESA’s EO Grid Processing On-Demand (EO-GPOD) Team.

References

  1. Backhaus JO (1985) A three-dimensional model for the simulation of shelf sea dynamics. Deut Hydrogr Z 38:165–187CrossRefGoogle Scholar
  2. Brekke C, Solberg AHS (2005) Oil spill detection by satellite remote sensing. Remote Sens Environ 95:1–13CrossRefGoogle Scholar
  3. FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Rome, p 200Google Scholar
  4. Gade M (2006) On the imaging of biogenic and anthropogenic surface films on the sea by radar sensors. In: Gade, M, Hühnerfuss H, Korenowski GM (eds) Marine surface films: chemical characteristics, influence on air-sea interactions and remote sensing, vol 342. Springer, Heidelberg, pp 189–204Google Scholar
  5. Gade M, Alpers W (1999) Using ERS-2 SAR images for routine observation of marine pollution in European coastal waters. Sci Total Environ 237–238:441–448CrossRefGoogle Scholar
  6. Gade M, Alpers W, Hühnerfuss H, Masuko H, Kobayashi T (1998) The imaging of biogenic and anthropogenic surface films by a multi-frequency multi-polarization synthetic aperture radar measured during the SIR-C/X-SAR missions. J Geophys Res 103:18851–18866CrossRefGoogle Scholar
  7. Gade M, Byfield V, Ermakov S, Lavrova O, Mitnik L (2013) Slicks as indicators for marine processes. Oceanography 26(2):138–149CrossRefGoogle Scholar
  8. Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch JS (2013) Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-earth system model. J Adv Model Earth Syst 5:422–446.  https://doi.org/10.1002/jame.20023CrossRefGoogle Scholar
  9. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR reanalysis 40-year project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  10. Mayer B (1995) A three-dimensional numerical SPM transport model with application to the German Bight. In: GKSS Forschungszentrum Geesthacht GmbH (ed) GKSS report 95/E/59. GKSS, p 96 (in German)Google Scholar
  11. Mayer B, Damm PE (2012) The Makassar Strait throughflow and its jet. J Geophys Res 117:C07020.  https://doi.org/10.1029/2011JC007809CrossRefGoogle Scholar
  12. Meier C (2016) Untersuchungen zur Detektion von mariner Ölverschmutzung in indonesischen Seegebieten mit satellitengestützten Radarsensoren. B.Sc. thesis. Universität Hamburg, Institut für Meereskunde (in German)Google Scholar
  13. Purwanto (2003) Status and management of the Java Sea fisheries, in assessment, management and future directions for coastal fisheries in Asian Countries. In: Silvestre G, Garces L, Stobutzki I, Ahmed M, Valmonte-Santos RA, Luna C, Lachica-Aliño L, Munro P, Christensen V, Pauly D (eds) Proceed. WorldFish center conference 67(1):793–832Google Scholar
  14. Sprintall J, Wijffels SE, Molcard R (2009) Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004–2006. J Geophys Res 114:1–58CrossRefGoogle Scholar
  15. Wight AWR, Hare LH, Reynolds JR (1993) Tarakan Basin, NE Kalimantan, Indonesia: a century of exploration and future potential. Geol Soc Malaysia Bull 33:263–288Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Martin Gade
    • 1
  • Bernhard Mayer
    • 1
  • Carolin Meier
    • 1
  • Thomas Pohlmann
    • 1
  • Mutiara Putri
    • 2
  • Agus Setiawan
    • 3
  1. 1.Universität Hamburg, Institut für MeereskundeHamburgGermany
  2. 2.Institute Technology BandungBandungIndonesia
  3. 3.Agency for Marine and Fisheries Research and DevelopmentJakartaIndonesia

Personalised recommendations