Advertisement

Length Categories of Infinite Height

  • Henning KrauseEmail author
  • Dieter Vossieck
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 242)

Abstract

For abelian length categories, the borderline between finite and infinite representation type is discussed. Characterisations of finite representation type are extended to length categories of infinite height, and the minimal length categories of infinite height are described.

References

  1. 1.
    I. Kr. Amdal and F. Ringdal, Catégories unisérielles, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A85–A87 and A247–A249.Google Scholar
  2. 2.
    M. Auslander, Coherent functors, in Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), 189–231, Springer, New York, 1966.CrossRefGoogle Scholar
  3. 3.
    M. Auslander, Representation theory of Artin algebras. II, Comm. Algebra 1 (1974), 269–310.MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Auslander, Large modules over Artin algebras, in Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), 1–17, Academic Press, New York, 1976.Google Scholar
  5. 5.
    M. Auslander, Functors and morphisms determined by objects, in Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976), 1–244. Lecture Notes in Pure Appl. Math., 37, Dekker, New York, 1978.Google Scholar
  6. 6.
    M. Auslander, Relations for Grothendieck groups of Artin algebras, Proc. Amer. Math. Soc. 91 (1984)no. 3.MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Auslander and I. Reiten, Representation theory of Artin algebras. III. Almost split sequences, Comm. Algebra 3 (1975), 239–294.MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183–1205, 1337; translation in Math. USSR-Izv. 35 (1990), no. 3, 519–541.Google Scholar
  9. 9.
    D. J. Benson and R. A. Parker, The Green ring of a finite group, J. Algebra 87 (1984), no. 2, 290–331.MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Breitsprecher, Lokal endlich präsentierbare Grothendieck-Kategorien, Mitt. Math. Sem. Giessen Heft 85 (1970), 1–25.MathSciNetzbMATHGoogle Scholar
  11. 11.
    M. C. R. Butler, Grothendieck groups and almost split sequences, in Integral representations and applications (Oberwolfach, 1980), 357–368, Lecture Notes in Math., 882, Springer, Berlin, 1981.CrossRefGoogle Scholar
  12. 12.
    W. Crawley-Boevey, Locally finitely presented additive categories, Comm. Algebra 22 (1994), no. 5, 1641–1674.MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris(1970).zbMATHGoogle Scholar
  14. 14.
    Yu. A. Drozd, Finite modules over purely Noetherian algebras. (Russian) Translated in Proc. Steklov Inst. Math. 1991, no. 4, 97–108. Galois theory, rings, algebraic groups and their applications (Russian). Trudy Mat. Inst. Steklov. 183 (1990), 86–96, 225.Google Scholar
  15. 15.
    P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.MathSciNetCrossRefGoogle Scholar
  16. 16.
    P. Gabriel, Indecomposable representations. II, in Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), 81–104, Academic Press, London, 1973.Google Scholar
  17. 17.
    W. H. Gustafson, On hereditary orders, Comm. Algebra 15 (1987), no. 1-2, 219–226.MathSciNetCrossRefGoogle Scholar
  18. 18.
    I. Herzog, The Ziegler spectrum of a locally coherent Grothendieck category, Proc. London Math. Soc. (3) 74 (1997), no. 3, 503–558.MathSciNetCrossRefGoogle Scholar
  19. 19.
    J. P. Jans, On the indecomposable representations of algebras, Ann. of Math. (2) 66 (1957), 418–429.MathSciNetCrossRefGoogle Scholar
  20. 20.
    H. Krause, The spectrum of a locally coherent category, J. Pure Appl. Algebra 114 (1997), no. 3, 259–271.MathSciNetCrossRefGoogle Scholar
  21. 21.
    H. Krause, Morphisms determined by objects and flat covers, Forum Math. 28 (2016), no. 3, 425–435.MathSciNetCrossRefGoogle Scholar
  22. 22.
    H. Krause, Auslander-Reiten duality for Grothendieck abelian categories, arXiv:1604.02813.
  23. 23.
    H. Kupisch, Symmetrische Algebren mit endlich vielen unzerlegbaren Darstellungen. I, J. Reine Angew. Math. 219 (1965), 1–25.MathSciNetzbMATHGoogle Scholar
  24. 24.
    C. M. Ringel and H. Tachikawa, \({\rm QF}-3\) rings, J. Reine Angew. Math. 272 (1974).Google Scholar
  25. 25.
    C. Schoeller, Étude de la catégorie des algèbres de Hopf commutatives connexes sur un corps, Manuscripta Math. 3 (1970), 133–155.MathSciNetCrossRefGoogle Scholar
  26. 26.
    J.-P. Serre, Gèbres, Enseign. Math. (2) 39 (1993), no. 1-2, 33–85.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations