Descent of Equivalences and Character Bijections

  • Radha KessarEmail author
  • Markus Linckelmann
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 242)


Categorical equivalences between block algebras of finite groups—such as Morita and derived equivalences—are well known to induce character bijections which commute with the Galois groups of field extensions. This is the motivation for attempting to realise known Morita and derived equivalences over non-splitting fields. This article presents various results on the theme of descent to appropriate subfields and subrings. We start with the observation that perfect isometries induced by a virtual Morita equivalence induce isomorphisms of centres in non-split situations and explain connections with Navarro’s generalisation of the Alperin–McKay conjecture. We show that Rouquier’s splendid Rickard complex for blocks with cyclic defect groups descends to the non-split case. We also prove a descent theorem for Morita equivalences with endopermutation source.

2010 Mathematics Subject Classification



  1. 1.
    R. Boltje and B. Xu, On p-permutation equivalences: between Rickard equivalences and isotypies, Trans. Amer. Math. Soc 360 (2008), 5067–5087.MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Bouc, The Dade group of a p-group, Invent. Math., 164 (2006), 189–231.MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181–182 (1990), 61–92.zbMATHGoogle Scholar
  4. 4.
    C. W. Curtis and I. Reiner, Methods of Representation theory Vol. I, John Wiley and Sons, New York, London, Sydney (1981).zbMATHGoogle Scholar
  5. 5.
    E. C. Dade, Endo-permutation modules over p-groups, I, II, Ann. Math. 107 (1978), 459–494, 108 (1978), 317–346.Google Scholar
  6. 6.
    W. Feit, The Representation Theory of Finite Groups, North-Holland Mathematical Library 25, North-Holland Publishing Company, Amsterdam (1982).Google Scholar
  7. 7.
    J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1959), 430–445.MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. A. Green, Walking around the Brauer tree, J. Austr. Math. Soc. 17 (1974), 197–213.MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Grothendieck, Éléments de géométrie algébrique IV, Étude locale des schémas et des morphismes de schémas II. Inst. Hautes Etudes Sci. Publ. Math. 24 (1965).Google Scholar
  10. 10.
    R. Knörr, Relative projective covers. Proc. Symp. Mod. Repr. Finite Groups, Aarhus Univ. (1978), 28–32.Google Scholar
  11. 11.
    B. Külshammer, On p-blocks of p-solvable groups, Comm. Algebra 9 (1981), 1763–1785.MathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Külshammer, Crossed products and blocks with normal defect groups, Comm. Algebra 13 (1985), 147–168.MathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Y. Lam, Lectures on Modules and Rings. Graduate Texts in Mathematics 189, Springer-Verlag, New York Berlin Heidelgerg (1998).Google Scholar
  14. 14.
    C. Lassueur and J. Thévenaz, Lifting endo-p-permutation modules. Preprint (2017).Google Scholar
  15. 15.
    M. Linckelmann, Modules in the sources of Green’s exact sequences for cyclic blocks, Invent. Math. 97 (1989) 129–140.MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Linckelmann, Stable equivalences of Morita type for self-injective algebras and p-groups, Math. Z. 223 (1996) 87–100.MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Linckelmann, The isomorphism problem for cyclic blocks and their source algebras, Invent. Math. 125, (1996), 265–283.MathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Linckelmann, Transfer in Hochschild cohomology of blocks of finite groups, Algebras and Representation Theory 2 (1999), 107–135.MathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Linckelmann, On stable equivalences with endopermutation source, J. Algebra 434 (2015), 27–45.MathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Linckelmann, The block theory of finite groups I/II. Cambridge University Press, to appear (2018).Google Scholar
  21. 21.
    M. Linckelmann and N. Mazza, The Dade group of a fusion system. J. Group Theory 12 (2009), 55–74.MathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics 5 (1998).Google Scholar
  23. 23.
    A. Mărcuş, Derived invariance of Cliord classes, J. Group Theory 12 (2009), 83–94.MathSciNetCrossRefGoogle Scholar
  24. 24.
    H. Nagao and Y. Tsushima, Representations of Finite Groups, Academic Press, San Diego (1989).zbMATHGoogle Scholar
  25. 25.
    G. Navarro, The McKay conjecture and Galois automorphisms, Annals of Mathematics, 160 (2004), 1129–1140.MathSciNetCrossRefGoogle Scholar
  26. 26.
    J. Neukirch, Algebraic Number Theory, Springer-Verlag, Berlin (1999).CrossRefGoogle Scholar
  27. 27.
    L. Puig, Nilpotent blocks and their source algebras, Invent. Math. 93 (1988), 77–116.MathSciNetCrossRefGoogle Scholar
  28. 28.
    L. Puig, On the local Structure of Morita and Rickard Equivalences Between Brauer blocks, Progr. Math., 178, Birkhäuser, Basel, 1999.Google Scholar
  29. 29.
    L. Puig, Block source algebras in p-solvable groups, Michigan Math. J. 58 (2009), 323–338.MathSciNetCrossRefGoogle Scholar
  30. 30.
    I. Reiner, Relations between integral and modular representations, Michigan Math. J. 13 (1966) 357–372.MathSciNetCrossRefGoogle Scholar
  31. 31.
    K. W. Roggenkamp, Blocks of cyclic defect and Green orders. Comm. Algebra 20(6) (1992), 1715–1734.MathSciNetCrossRefGoogle Scholar
  32. 32.
    R. Rouquier, The derived category of blocks with cyclic defect groups, in: Derived Equivalences for Group Rings (S. König, A. Zimmermann), Lecture Notes in Math. 1685, Springer Verlag, Berlin-Heidelberg, 1998, 199–220.Google Scholar
  33. 33.
    J. P. Serre, Local fields, Graduate Texts in Mathematics 67 (1979).Google Scholar
  34. 34.
    J. Thévenaz, Relative projective covers and almost split sequences. Comm. Alg. 13 (1985), 1535–1554.MathSciNetCrossRefGoogle Scholar
  35. 35.
    J. Thévenaz, G-Algebras and Modular Representation Theory, Oxford Science Publications, Clarendon, Oxford (1995).zbMATHGoogle Scholar
  36. 36.
    J. Thévenaz, Endo-permutation Modules, a guided tour in: Group Representation Theory (M. Geck, D. Testerman, J. Thévenaz), EPFL Press, 2007, 115–147.Google Scholar
  37. 37.
    A. Turull, Strengthening the McKay conjecture to include local fields and local Schur indices, J. Algebra 319 (2008), 4853–4868.MathSciNetCrossRefGoogle Scholar
  38. 38.
    C. A. Weibel, An introduction to homological algebra, Cambridge studies in advanced mathematics 38, Cambridge University Press (1994).Google Scholar
  39. 39.
    A. Zimmermann, Two Sided Tilting Complexes for Green Orders and Brauer Tree Algebras. J. Algebra 187 (1997), 446–473.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of LondonLondonUK

Personalised recommendations