Advertisement

Anderson and Gorenstein Duality

  • J. P. C. Greenlees
  • V. Stojanoska
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 242)

Abstract

The paper relates the Gorenstein duality statements of Dwyer, Greenlees, Iyengar (Adv Math 200(2):357–402, 2006, [1]), Dwyer, Greenlees, Iyengar (J K-Theory 8(1):107–133, 2011, [2]) to the Anderson duality statements of Vesna Stojanoska (Duality for Topological Modular Forms, ProQuest LLC, Ann Arbor, MI, 2011, Thesis (Ph.D.)–Northwestern University, [3]), Vesna Stojanoska (Doc Math 17:271–311, 2012, [4]), and explains how to use local cohomology and invariant theory to understand the numerology of shifts in simple cases.

References

  1. 1.
    W. G. Dwyer, J. P. C. Greenlees, and S. Iyengar, Duality in algebra and topology, Adv. Math. 200 (2006), no. 2, 357–402. MR 2200850.MathSciNetCrossRefGoogle Scholar
  2. 2.
    W. G. Dwyer, J. P. C. Greenlees, and S. B. Iyengar, Gross-Hopkins duality and the Gorenstein condition, J. K-Theory 8 (2011), no. 1, 107–133. MR 2826281.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Vesna Stojanoska, Duality for Topological Modular Forms, ProQuest LLC, Ann Arbor, MI, 2011, Thesis (Ph.D.)–Northwestern University. MR 2890200.Google Scholar
  4. 4.
    Vesna Stojanoska, Duality for topological modular forms, Doc. Math. 17 (2012), 271–311. MR 2946825.Google Scholar
  5. 5.
    Michael Hill and Lennart Meier, The C2–spectrum Tmf1(3) and its invertible modules, Algebr. Geom. Topol. 17 (2017), no. 4, 1953–2011. MR 3685599.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Drew Heard and Vesna Stojanoska, \(K\)-theory, reality, and duality, J. K-Theory 14 (2014), no. 3, 526–555. MR 3349325.MathSciNetCrossRefGoogle Scholar
  7. 7.
    J. P. C. Greenlees and Lennart Meier, Gorenstein duality for Real spectra, arXiv:1607.02332. Algebraic and Geometric Topology 17 (2017) 3547–3619.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Michael Hill and Tyler Lawson, Automorphic forms and cohomology theories on Shimura curves of small discriminant, Adv. Math. 225 (2010), no. 2, 1013–1045. MR 2671186.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Tyler Lawson, The Shimura curve of discriminant 15 and topological automorphic forms, Forum Math. Sigma 3 (2015), e3, 32. MR 3324940.Google Scholar
  10. 10.
    D. J. Benson, Polynomial invariants of finite groups, London Mathematical Society Lecture Note Series, vol. 190, Cambridge University Press, Cambridge, 1993. MR 1249931.Google Scholar
  11. 11.
    A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997, With an appendix by M. Cole. MR 1417719.Google Scholar
  12. 12.
    Edgar H. Brown, Jr. and Michael Comenetz, Pontrjagin duality for generalized homology and cohomology theories, Amer. J. Math. 98 (1976), no. 1, 1–27. MR 0405403.Google Scholar
  13. 13.
    D.W. Anderson, Universal coefficient theorems for k-theory, mimeographed notes, Univ. California, Berkeley, Calif. (1969).Google Scholar
  14. 14.
    Mark Mahowald and Charles Rezk, Brown-comenetz duality and the adams spectral sequence, Amer. J. Math 121 (1999), no. 6, 1153–1177.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lennart Meier, (topological) modular forms with level structures: decompositions and duality, arXiv:1609.09264 (2016).
  16. 16.
    J. P. C. Greenlees and J. P. May, Completions in algebra and topology, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 255–276. MR 1361892.CrossRefGoogle Scholar
  17. 17.
    J. P. C. Greenlees, \(K\)-homology of universal spaces and local cohomology of the representation ring, Topology 32 (1993), no. 2, 295–308. MR 1217070.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Michael Hill and Tyler Lawson, Topological modular forms with level structure, Invent. Math. 203 (2016), no. 2, 359–416. MR 3455154.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mark Behrens and Tyler Lawson, Topological automorphic forms, Mem. Amer. Math. Soc. 204 (2010), no. 958, xxiv+141. MR 2640996.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mark Mahowald and Charles Rezk, Topological modular forms of level 3, Pure Appl. Math. Q. 5 (2009), no. 2, Special Issue: In honor of Friedrich Hirzebruch. Part 1, 853–872. MR 2508904.Google Scholar
  21. 21.
    Vesna Stojanoska, Calculating descent for 2-primary topological modular forms, An alpine expedition through algebraic topology, Contemp. Math., vol. 617, Amer. Math. Soc., Providence, RI, 2014, pp. 241–258. MR 3243402.Google Scholar
  22. 22.
    Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83. MR 0485835.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsSheffieldUK
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations