Rational Cohomology and Supports for Linear Algebraic Groups

  • Eric M. FriedlanderEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 242)


What follows are rough “notes” based upon four lectures given by the author at PIMS in Vancouver over the period June 27–June 30, 2016.

  • Lecture I. Affine groups schemes over k.

  • Lecture II. Algebraic representations.

  • Lecture III. Cohomological support varieties.

  • Lecture IV. Support varieties for linear algebraic groups.


  1. 1.
    J. Alperin and L. Evens, Representations resolutions, and Quillen’s dimension theorem, J. Pure and Appl Alg. 22 (1981), 1–9.MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Alperin and L. Evens, Varieties and elementary abelian groups, J. Pure and Appl Alg. 26 (1982), 221–227.MathSciNetCrossRefGoogle Scholar
  3. 3.
    G. Avrunin, S. Scott, Quillen stratification for modules, Invent. Math 66 (1982), 277–286.MathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Bardsley, R. Richardson, Étale slices for algebraic transformation groups in characteristic p. Proc. London Math Soc 51 (1985), 295–317.MathSciNetCrossRefGoogle Scholar
  5. 5.
    D. Benson, Representations of elementary abelian p-groups and vector bundles. CUP, 2016.Google Scholar
  6. 6.
    D. Benson and J. Pevtsova, A realization theorem for modules of constant Jordan type and vector bundles, Trans. Amer. Math. Soc. 364 (2012), 6459–6478.MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. Bondarko and V. Drozd, The representation type of finite groups, Zap. Nauncn Sem. Leningrad. Otdel Math. INst. Steklov (LOMI) 71 (1977), 24–41.Google Scholar
  8. 8.
    A. Borel, Sur la cohomologie des espaces fibres principaux et des espaes homogenenes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115–207.MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Carlson, The varieties and the cohomology ring of a module, J. Algebra 85 (1983), 101–143.MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Carlson, The variety of an indecomposable module is connected, Invent. Math 77 (1984), 291–299.MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Carlson, E. Friedlander, J. Pevtsova, Modules of constant Jordan type, J. für die reine und angewandte Mathematik 614 (208), 191–234.Google Scholar
  12. 12.
    J. Carlson, E. Friedlander, J. Pevtsova, Vector bundles associated to Lie Algebras, J. Reine Angew. Math 716 (2016), 147–178.MathSciNetzbMATHGoogle Scholar
  13. 13.
    J. Carlson, Z. Lin, and D. Nakano, Support varieties for modules over Chevalley groups and classical Lie algebras, Trans. A.M.S. 360 (2008), 1870–1906.Google Scholar
  14. 14.
    E. Cline, B. Parshall, L. Scott, Induced modules and affine quotients, Math. Ann 230 (1977), 1–14.MathSciNetCrossRefGoogle Scholar
  15. 15.
    E. Cline, B. Parshall, L. Scott, Cohomology, hyperalgebras, and representations, J.Algebra 63 (1980), 98–123.MathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Cline, B. Parshall, L. Scott, W. van der Kallen, Rational and generic cohomology, Invent. Math 39 (1977), 143–163.MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Donkin, On projective modules for algebraic groups, J. London Math. Soc. (2) (1996), 75–88.MathSciNetCrossRefGoogle Scholar
  18. 18.
    L. Evens, The cohomology ring of a finite group, Trans. A.M.S. 101 (1961), 224–239.MathSciNetCrossRefGoogle Scholar
  19. 19.
    E. Friedlander, Filtrations, 1-parameter subgroups, and rational injectivity, Adv. Math. 323 (2018), 84–113. arXiv:408.2918.MathSciNetCrossRefGoogle Scholar
  20. 20.
    E. Friedlander, Restrictions to \(G({\mathbb{F}}_p)\) and \(G_{(r)}\) of rational \(G\) -modules, Compos. Math. 147 (2011), no. 6, 1955–1978.Google Scholar
  21. 21.
    E. Friedlander, Support varieties for rational representations, Compositio Math 151 (2015), 765–792.MathSciNetCrossRefGoogle Scholar
  22. 22.
    E. Friedlander, B. Parshall, On the cohomology of algebraic and related finite groups, Invent. Math 74 (1983), 85–117.MathSciNetCrossRefGoogle Scholar
  23. 23.
    E. Friedlander, B. Parshall, Cohomology of infinitesimal and discrete groups, Math. Ann 273 (1986), 353–374.MathSciNetCrossRefGoogle Scholar
  24. 24.
    E. Friedlander, B. Parshall, Geometry of \(p\)-Unipotent Lie Agebras, J. Algebra 109 (1987), 25–45.Google Scholar
  25. 25.
    E. Friedlander, B. Parshall, Modular representation theory of restricted Lie algebras, Amer. J. Math. 110 (1988), 1055–1094.MathSciNetCrossRefGoogle Scholar
  26. 26.
    E. Friedlander, J. Pevtsova, Representation-theoretic support spaces for finite group schemes, Amer. J. of Math. 127 (2005), 379–420.MathSciNetCrossRefGoogle Scholar
  27. 27.
    E. Friedlander, J. Pevtsova, \(\Pi \) -supports for modules for finite group schemes, Duke. Math. J. 139 (2007), 317–368.Google Scholar
  28. 28.
    E. Friedlander, J. Pevtsova, Generalized support varieties for finite group schemes, Documenta Math (2010), 197–222.Google Scholar
  29. 29.
    E. Friedlander, J. Pevtsova, Constructions for infinitesimal group schemes, Trans. A.M.S. 363 (2011), 6007–6061.MathSciNetCrossRefGoogle Scholar
  30. 30.
    E. Friedlander, J. Pevtsova, A. Suslin, Generic and Jordan types, Invent math 168 (2007), 485–522.MathSciNetCrossRefGoogle Scholar
  31. 31.
    E. Friedlander, A. Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127(1997), 209–270.MathSciNetCrossRefGoogle Scholar
  32. 32.
    W. Hardesty, D. Nakano, P. Sobaje, On the existence of mock injective modules for algebraic groups, Bull. Lond. Math. Soc. 49 (2017), 806 - 817. arXiv:1604.03840.MathSciNetCrossRefGoogle Scholar
  33. 33.
    R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics 52, Springer-Verlag, 1977.Google Scholar
  34. 34.
    N. Jacobson, Lie Algebras, Interscience tracts in Pure and Applied Mathematics 10, Wile & Sons, 1962.Google Scholar
  35. 35.
    J.C. Jantzen, Kohomologie von p-lie Algebren und nilpotente Elemente, Amh. Math. Sem. Univ. Hamburg 56 (1986), 191–219.MathSciNetCrossRefGoogle Scholar
  36. 36.
    J.C. Jantzen, Representations of Algebraic groups, Second edition. Math Surveys and Monographs 107, A.M.S., 2003.Google Scholar
  37. 37.
    G.R. Kempf, Linear systems on homogenous spaces, Annals of Math 103 (1976), 557–591.MathSciNetCrossRefGoogle Scholar
  38. 38.
    S. Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555–563.MathSciNetCrossRefGoogle Scholar
  39. 39.
    S. MacLane, Homology. Grundlehren 114, Springer, 1967.Google Scholar
  40. 40.
    D. Quillen, The spectrum of an equivariant cohomology ring: I, Ann. of Math 94(1971), 549–572.MathSciNetCrossRefGoogle Scholar
  41. 41.
    D. Quillen, The spectrum of an equivariant cohomology ring: II, Ann. of Math 94(1971), 573–602.MathSciNetCrossRefGoogle Scholar
  42. 42.
    G. Seitz, Unipotent elements, tilting modules, and saturation, Invent. Math. 141 (2000), 467–502.MathSciNetCrossRefGoogle Scholar
  43. 43.
    P. Sobaje, Support varieties for Frobenius kernels of classical groups. J. Pure and Appl. Algebra 216 (2013), 2657–2664.MathSciNetCrossRefGoogle Scholar
  44. 44.
    P. Sobaje, Exponentiation of commuting nilpotent varieties, J. Pure and Appl. Algebra 219, (2015), 2206–2217.MathSciNetCrossRefGoogle Scholar
  45. 45.
    R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56.MathSciNetCrossRefGoogle Scholar
  46. 46.
    J.B. Sullivan, Representations of the hyperalgebra of an algebraic group, Amer. J. Math 100 (1978), 643–652.MathSciNetCrossRefGoogle Scholar
  47. 47.
    A. Suslin, E. Friedlander, C. Bendel, Infinitesimal 1-parameter subgroups and cohomology, J. Amer. Math. Soc. 10 (1997), 693–728.MathSciNetCrossRefGoogle Scholar
  48. 48.
    A. Suslin, E. Friedlander, C. Bendel, Support varieties for infinitesimal group schemes, J. Amer. Math. Soc. 10 (1997), 729–759.MathSciNetCrossRefGoogle Scholar
  49. 49.
    R. Swan, Groups with no odd dimensionlal cohomology, J algebra 17 (1971), 401–403.MathSciNetCrossRefGoogle Scholar
  50. 50.
    B. Venkov, Cohomology algebras for some classifying spaces, Dokl. Akad. Nauk. SSSR 127 (1959), 943–944.MathSciNetzbMATHGoogle Scholar
  51. 51.
    W. Waterhouse, Introduction to affine group schemes. Graduate Texts in Mathematics 66, Springer-Verlag, 1979.Google Scholar
  52. 52.
    C. Weibel, An introduction to homological algebra. Cambridge Studies in Advanced Math 38, Cambridge U. Press, 1994.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations