Thick Subcategories of the Relative Stable Category

  • Jon F. CarlsonEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 242)


Let G be a finite group and k an algebraically closed field of characteristic \(p > 0\). Let \({\mathcal H}\) be a collection of p-subgroups of G. We investigate the relative stable category \(\mathbf{stmod}_{\mathcal H}(kG)\) of finitely generated modules modulo \({\mathcal H}\)-projective modules. Triangles in this category correspond to \({\mathcal H}\)-split sequences. Hence, compared to the ordinary stable category, there are fewer triangles and more thick subcategories. Our interest is in the spectrum of the category and its relationship to the induction functor. In some cases, the spectrum is not noetherian.

1991 Mathematics Subject Classification

20C20 (primary) 20J06 


  1. 1.
    J. L. Alperin, A construction of endo-permutation modules, J. Group Theory 4(2001), 3–10.Google Scholar
  2. 2.
    P. Balmer, The spectrum of prime ideals in tensor triangulated categories, J. Reine & Angew. Math. 588(2005), 149–168.MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Balmer and G. Favi, Generalized tensor idempotent and the telescope conjecture, Proc. Lond. Math. Soc. (3) 102(2011), 1161–1185.MathSciNetCrossRefGoogle Scholar
  4. 4.
    D. J. Benson, Cohomology of modules in the principal block of a finite group, New York J. Math. 1(1994/95), 196–205.Google Scholar
  5. 5.
    D. J. Benson and J. F. Carlson, Nilpotent elements in the Green ring, J. Algebra, 104(1986), 329–350.MathSciNetCrossRefGoogle Scholar
  6. 6.
    D. J. Benson, J. F. Carlson and J. Rickard, Complexity and varieties for infinitely generated modules, II, Math. Proc. Cam. Phil. Soc. 120(1996), 597–615.MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Benson, J. Carlson and J. Rickard, Thick subcategories of the stable category, Fund. Math. 153 (1997), 59–80.MathSciNetzbMATHGoogle Scholar
  8. 8.
    D. J. Benson, S. B. Iyengar, and H. Krause, Stratifying triangulated categories, J. Topology 4 (2011), 641–666.MathSciNetCrossRefGoogle Scholar
  9. 9.
    D. J. Benson and W. W. Wheeler, The Green correspondence for infinitely generated modules, J. London Math. Soc. (2) 63(2001), 69–82.MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. F. Carlson, The variety of an indecomposable module is connected, Invent. Math. 77(1984), 291–299.MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. F. Carlson, Products and projective resolutions, Proc. Sym. Pure Math., 47(1987), 399–408.MathSciNetCrossRefGoogle Scholar
  12. 12.
    J. F. Carlson, Varieties and induction, Bol. Soc. Math. Mex. 2(1996), 101–114.Google Scholar
  13. 13.
    J. F. Carlson, Modules and group algebras, ETH Lecture Notes, Birkhäuser (1996) Basel.Google Scholar
  14. 14.
    J. F. Carlson and S. Iyengar, Thick subcategories of the bounded derived category of a finite group, Trans. Amer. Math. Soc. 367(2015), 2703–2717.MathSciNetCrossRefGoogle Scholar
  15. 15.
    J. F. Carlson, C. Peng and W. W. Wheeler, Transfer maps and virtual projectivity, J. Algebra 204(1998), 286–381.MathSciNetCrossRefGoogle Scholar
  16. 16.
    J. F. Carlson, L. Townsley, L. Valeri-Elizondo, M. Zhang, Cohomology rings of finite groups. With an appendix: Calculations of cohomology rings of groups of order dividing 64, Algebras and Applications, 3. Kluwer Academic Publishers, Dordrecht, 2003.CrossRefGoogle Scholar
  17. 17.
    S. B. Conlon, Certain Representation Algebras, J. Australian Math. Soc. 5(1965), 83–89.MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. A. Green, On the indecomposable representations of a finite group, Math. Zeit. 70(1959), 430–445.MathSciNetCrossRefGoogle Scholar
  19. 19.
    D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, Cambridge University Press, Cambridge, 1988.CrossRefGoogle Scholar
  20. 20.
    M. J. Hopkins, Global methods in homotopy theory, Homotopy Theory, Durham 1985, Lecture Notes in Mathematics, vol. 117, Cambridge University Press, 1987.Google Scholar
  21. 21.
    A. Neeman, The chromatic tower for \(D(R)\), Topology 31 (1992), 519–532.MathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Oppermann and J. Stovicek, Generating the bounded derived category and perfect ghosts. Bull. London Math. Soc. 44(2012), 285–298.MathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Rickard, Idempotent modules in the stable category, J. London Math. Soc. 178 (1997), 149–170.MathSciNetCrossRefGoogle Scholar
  24. 24.
    C. M. Ringel, The representation type of local algebras, Lecture Notes in Math. No. 488.Google Scholar
  25. 25.
    L. Wang and J. P. Zhang, Relative stable equivalences of blocks, preprint (2014).Google Scholar
  26. 26.
    E. Yalçin, Productive elements in group cohomology, Homology, Homotopy and Applications, 13(2011), 381–401.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of GeorgiaAthensUSA

Personalised recommendations