Advertisement

Endotrivial Modules for Infinite Groups

  • Peter SymondsEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 242)

Abstract

These notes were originally intended for a course given at the PIMS Summer School on Geometric and Topological Aspects of the Representation Theory of Finite Groups in Vancouver, July 27–30 2016. The material is based on a project with Nadia Mazza and a more general and complete treatment of the new results will appear elsewhere. We intend these notes to serve as an introduction to the field.

References

  1. 1.
    A. Beligiannis, The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co-)stabilization, Comm. Algebra 28 (2000), 4547–4596.MathSciNetCrossRefGoogle Scholar
  2. 2.
    D.J. Benson, Representations and Cohomology II, Cambridge Studies in Advanced Mathematics 30 (1991), Cambridge Univ. Press, Cambridge.Google Scholar
  3. 3.
    K.S. Brown, Cohomology of Groups. Graduate Texts in Mathematics, 87. Springer-Verlag, New York-Berlin, 1982.CrossRefGoogle Scholar
  4. 4.
    R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, Univ. Hannover, 1986, available at http://hdl.handle.net/1807/16682.
  5. 5.
    J. Cornick, I.J. Leary, Some remarks concerning degree zero complete cohomology, Une dégustation topologique : homotopy theory in the Swiss Alps (Arolla, 1999), 2125, Contemp. Math., 265, Amer. Math. Soc., Providence, RI, 2000.Google Scholar
  6. 6.
    I. Emmanouil, On certain cohomological invariants of groups, Adv. Math. 225 (2010), 3446–3462.MathSciNetCrossRefGoogle Scholar
  7. 7.
    T.V. Gedrich, K.W. Gruenberg, Complete cohomological functors on groups, Topology Appl. 25 (1987), 203–223.MathSciNetCrossRefGoogle Scholar
  8. 8.
    D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Math. Soc. Lecture Note Series, 119. Cambridge Univ. Press, Cambridge, 1988.Google Scholar
  9. 9.
    B.M. Ikenaga, Homological dimension and Farrell cohomology, J. Algebra 87 (1984), 422–457.MathSciNetCrossRefGoogle Scholar
  10. 10.
    J.P. Serre, Trees, Springer-Verlag, Berlin, 2003.Google Scholar
  11. 11.
    R.G. Swan Groups of cohomological dimension one, J. Algebra 12 (1969) 585–610.MathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Thévenaz, Endo-permutation modules, a guided tour, Group representation theory, 115–147, EPFL Press, Lausanne, 2007.Google Scholar
  13. 13.
    T. tom Dieck, Transformation Groups, de Gruyter, Berlin, 1987.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations