Advertisement

Extensions of the Benson-Solomon Fusion Systems

  • Ellen Henke
  • Justin LyndEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 242)

Abstract

The Benson-Solomon systems comprise the one currently known family of simple saturated fusion systems at the prime two that do not arise as the fusion system of any finite group. We determine the automorphism groups and the possible almost simple extensions of these systems and of their centric linking systems.

Keywords

Fusion system Linking system Benson-Solomon fusion system Group extension 

2000 Mathematics Subject Classification

Primary 20D20 Secondary 20D05 

References

  1. 1.
    David J. Benson, Cohomology of sporadic groups, finite loop spaces, and the Dickson invariants, Geometry and cohomology in group theory (Durham, 1994), London Math. Soc. Lecture Note Ser., vol. 252, Cambridge Univ. Press, Cambridge, 1998, pp. 10–23. MR 1709949 (2001i:55017).Google Scholar
  2. 2.
    W. G. Dwyer and C. W. Wilkerson, A new finite loop space at the prime two, J. Amer. Math. Soc. 6 (1993), no. 1, 37–64. MR 1161306.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ran Levi and Bob Oliver, Construction of 2-local finite groups of a type studied by Solomon and Benson, Geom. Topol. 6 (2002), 917–990 (electronic).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Michael Aschbacher and Andrew Chermak, A group-theoretic approach to a family of 2-local finite groups constructed by Levi and Oliver, Ann. of Math. (2) 171 (2010), no. 2, 881–978.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ran Levi and Bob Oliver, Correction to: “Construction of 2-local finite groups of a type studied by Solomon and Benson” [Geom. Topol. 6 (2002), 917–990 (electronic); mr1943386], Geom. Topol. 9 (2005), 2395–2415 (electronic).Google Scholar
  6. 6.
    Kasper K. S. Andersen, Bob Oliver, and Joana Ventura, Reduced, tame and exotic fusion systems, Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 87–152. MR 2948790.Google Scholar
  7. 7.
    Michael Aschbacher, Radha Kessar, and Bob Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, vol. 391, Cambridge University Press, Cambridge, 2011. MR 2848834.Google Scholar
  8. 8.
    Bob Oliver, Extensions of linking systems and fusion systems, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5483–5500. MR 2657688 (2011f:55032).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Andrew Chermak, Bob Oliver, and Sergey Shpectorov, The linking systems of the Solomon 2-local finite groups are simply connected, Proc. Lond. Math. Soc. (3) 97 (2008), no. 1, 209–238. MR 2434096 (2009g:55018).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998, Almost simple \(K\)-groups. MR 1490581 (98j:20011).Google Scholar
  11. 11.
    Robert Steinberg, Automorphisms of finite linear groups, Canad. J. Math. 12 (1960), 606–615. MR 0121427.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Carles Broto, Jesper M. Møller, and Bob Oliver, Automorphisms of fusion systems of finite simple groups of lie type, preprint (2016), arXiv:1601.04566.
  13. 13.
    Carles Broto, Ran Levi, and Bob Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), no. 4, 779–856 (electronic).MathSciNetCrossRefGoogle Scholar
  14. 14.
    Michael Aschbacher, Normal subsystems of fusion systems, Proc. Lond. Math. Soc. (3) 97 (2008), no. 1, 239–271. MR 2434097 (2009e:20044).Google Scholar
  15. 15.
    Markus Linckelmann, A note on the Schur multiplier of a fusion system, J. Algebra 296 (2006), no. 2, 402–408.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Michael Aschbacher, The generalized Fitting subsystem of a fusion system, Mem. Amer. Math. Soc. 209 (2011), no. 986, vi+110. MR 2752788.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ellen Henke, Products in fusion systems, J. Algebra 376 (2013), 300–319. MR 3003728.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Justin Lynd, A characterization of the 2-fusion system of\( L_4(q)\), J. Algebra 428 (2015), 315–356. MR 3314296.Google Scholar
  19. 19.
    Jason Semeraro, Centralizers of subsystems of fusion systems, J. Group Theory 18 (2015), no. 3, 393–405. MR 3341522.Google Scholar
  20. 20.
    Markus Linckelmann, Simple fusion systems and the Solomon 2-local groups, J. Algebra 296 (2006), no. 2, 385–401.MathSciNetCrossRefGoogle Scholar
  21. 21.
    David A. Craven, Normal subsystems of fusion systems, J. Lond. Math. Soc. (2) 84 (2011), no. 1, 137–158. MR 2819694.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Mathematics, University of AberdeenAberdeenUK
  2. 2.Department of MathematicsUniversity of Louisiana at LafayetteLafayetteUSA

Personalised recommendations