Advertisement

Conclusions and Outlook

  • Mark Edward Barber
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

I hope that during the course of this thesis I have demonstrated that the new uniaxial stress technique that I describe is now coming out of its infancy. The first successful adaptation of the device by another group has now been reported, and used by Stern et al. [1] to study Sm\(\mathrm{B}_6\) under strain.

References

  1. 1.
    Stern, A., Dzero, M., Galitski, V. M., Fisk, Z., & Xia, J. (2016). Kondo insulator SmB\(_6\) under strain: Surface dominated conduction near room temperature. arXiv:1607.07454.
  2. 2.
    Labbé, J. & Bok, J. (1987). Superconductivity in alcaline-earth-substituted \({\rm La}_2{\rm CuO}_4\): A theoretical model. Europhysics Letters, 3, 1225–1230.Google Scholar
  3. 3.
    Ino, A., Kim, C., Nakamura, M., Yoshida, T., Mizokawa, T., Fujimori, A., et al. (2002). Doping-dependent evolution of the electronic structure of \({\rm La}_{2-{\rm x}}{\rm Sr}_x{\rm CuO}_4\) in the superconducting and metallic phases. Physical Review B, 65, 094504.Google Scholar
  4. 4.
    Abrecht, M., Ariosa, D., Cloetta, D., Mitrovic, S., Onellion, M., Xi, X. X., et al. (2003). Strain and high temperature superconductivity: Unexpected results from direct electronic structure measurements in thin films. Physical Review Letters, 91, 057002.Google Scholar
  5. 5.
    Bok, J., & Bouvier, J. (2012). Superconductivity and the Van Hove scenario. Journal of Superconductivity and Novel Magnetism, 25, 657–667.Google Scholar
  6. 6.
    Ghiringhelli, G., Le Tacon, M., Minola, M., Blanco-Canosa, S., Mazzoli, C., Brookes, N. B., et al. (2012). Long-range incommensurate charge fluctuations in (Y, Nd)\({\rm Ba}_2{\rm Cu}_3{\rm O}_{6+{\rm x}}\). Science, 337, 821–825.Google Scholar
  7. 7.
    da Silva Neto, E. H., Aynajian, P., Frano, A., Comin, R., Schierle, E., Weschke, E., et al. (2014). Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science, 343, 393–396.Google Scholar
  8. 8.
    Vojta, M. (2009). Lattice symmetry breaking in cuprate superconductors: Stripes, nematics, and superconductivity. Advances in Physics, 58, 699–820.Google Scholar
  9. 9.
    Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P., & Mackenzie, A. P. (2010). Nematic Fermi fluids in condensed matter physics. Annual Review of Condensed Matter Physics, 1, 153–178.Google Scholar
  10. 10.
    Fradkin, E., Kivelson, S. A., & Tranquada, J. M. (2015). Colloquium: Theory of intertwined orders in high temperature superconductors. Reviews of Modern Physics, 87, 457–482.Google Scholar
  11. 11.
    Takeshita, N., Sasagawa, T., Sugioka, T., Tokura, Y., & Takagi, H. (2004). Gigantic anisotropic uniaxial pressure effect on superconductivity within the CuO2 plane of \({\rm La}_{1.64}{\rm Eu}_{0.2}{\rm Sr}_{0.16}{\rm CuO}_4\): Strain control of stripe criticality. Journal of the Physics Society Japan, 73, 1123–1126.Google Scholar
  12. 12.
    Sasagawa, T., Sugioka, T., Takeshita, N., Kitazawa, K., & Takagi, H. (2003). Uniaxial pressure control of superconductivity via stripe instability in \({\rm La}_{1.64}{\rm Eu}_{0.2}{\rm Sr}_{0.16}{\rm CuO}_4\) crystals. Journal of Low Temperature Physics, 131, 395–399.  https://doi.org/10.1023/A:1022922429634.
  13. 13.
    Greiter, M., Lonzarich, G. G., & Taillefer, L. (1992). Effect of uniaxial stress on the onset of superconductivity in \({\rm UPt}_3\). Physics Letters A, 169, 199–204.Google Scholar
  14. 14.
    Jin, D. S., Carter, S. A., Ellman, B., Rosenbaum, T. F., & Hinks, D. G. (1992). Uniaxial-stress anisotropy of the double superconducting transition in \({\rm UPt}_3\). Physical Review Letters, 68, 1597–1600.Google Scholar
  15. 15.
    Joynt, R., & Taillefer, L. (2002). The superconducting phases of \({\rm UPt}_3\). Reviews of Modern Physics, 74, 235–294.Google Scholar
  16. 16.
    Aoki, Y., et al. (2003). Time-reversal symmetry-breaking superconductivity in heavy-fermion \({\rm PrOs}_4{\rm Sb}_{12}\) detected by muon-spin relaxation. Physical Review Letters, 91, 067003.Google Scholar
  17. 17.
    Fradkin, E., & Kivelson, S. A. (2010). Electron nematic phases proliferate. Science, 327, 155–156.Google Scholar
  18. 18.
    Kuo, H. -H., Chu, J. -H., Palmstrom, J. C., Kivelson, S. A., & Fisher, I. R. (2016). Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science, 352, 958–962.Google Scholar
  19. 19.
    Petersen, K. E. (1982). Silicon as a mechanical material. Proceedings of the IEEE, 70, 420–457.Google Scholar
  20. 20.
    Ogata, S., Hirosaki, N., Kocer, C., & Kitagawa, H. (2001). An ab initio calculation of the ideal tensile strength of \(\beta \)-silicon nitride. Physical Review B 64, 172102.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations