Quantum Criticality and Metamagnetism of Strained \(\mathrm{Sr}_3\mathrm{Ru}_2\mathrm{O}_7\)

  • Mark Edward BarberEmail author
Part of the Springer Theses book series (Springer Theses)


As outlined in Chap.  1, the field of strongly correlated electrons is dominated by emergent phenomena exhibiting exotic and intriguing properties. Identifying and characterising these phases has been the challenge for condensed matter physicists for the last few decades.


  1. 1.
    Ikeda, S.-I., Maeno, Y., Nakatsuji, S., Kosaka, M., & Uwatoko, Y. (2000). Ground state in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\): Fermi liquid close to a ferromagnetic instability. Physical Review B, 62, R6089–R6092.Google Scholar
  2. 2.
    Grigera, S. A., Borzi, R. A., Mackenzie, A. P., Julian, S. R., Perry, R. S., & Maeno, Y. (2003). Angular dependence of the magnetic susceptibility in the itinerant metamagnet \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Physical Review B, 67, 214427.Google Scholar
  3. 3.
    Tokiwa, Y., McHalwat, M., Perry, R. S., & Gegenwart, P. (2016). Multiple metamagnetic quantum criticality in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Physical Review Letters, 116, 226402.Google Scholar
  4. 4.
    Grigera, S. A., Gegenwart, P., Borzi, R. A., Weickert, F., Schofield, A. J., Perry, R. S., et al. (2004). Disorder-sensitive phase formation linked to metamagnetic quantum criticality. Science, 306, 1154–1157.Google Scholar
  5. 5.
    Lester, C., Ramos, S., Perry, R. S., Croft, T. P., Bewley, R. I., Guidi, T., et al. (2015). Field-tunable spin-density-wave phases in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Nature Materials, 14, 373–378.Google Scholar
  6. 6.
    Borzi, R. A., Grigera, S. A., Farrell, J., Perry, R. S., Lister, S. J. S., Lee, S. L., et al. (2007). Formation of a nematic fluid at high fields in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Science, 315, 214–217.Google Scholar
  7. 7.
    Chiao, M., Pfleiderer, C., Julian, S. R., Lonzarich, G. G., Perry, R. S., Mackenzie, A. P., et al. (2002). Effect of pressure on metamagnetic \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Physica B: Condensed Matter, 312(313), 698–699.Google Scholar
  8. 8.
    Wu, W., McCollam, A., Grigera, S. A., Perry, R. S., Mackenzie, A. P., & Julian, S. R. (2011). Quantum critical metamagnetism of \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\) under hydrostatic pressure. Physical Review B, 83, 045106.Google Scholar
  9. 9.
    Ikeda, S.-I., Shirakawa, N., Yanagisawa, T., Yoshida, Y., Koikegami, S., Koike, S., et al., (2004). Uniaxial-pressure induced ferromagnetism of enhanced paramagnetic \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Journal of the Physics Society Japan, 73, 1322–1325.Google Scholar
  10. 10.
    Ruddlesden, S. N., & Popper, P. (1957). New compounds of the \({\rm K}_2{\rm NiF}_4\) type. Acta Crystallographica, 10, 538–539.Google Scholar
  11. 11.
    Ruddlesden, S. N., & Popper, P. (1958). The compound \({\rm Sr}_3{\rm Ti}_2{\rm O}_7\) and its structure. Acta Crystallographica, 11, 54–55.Google Scholar
  12. 12.
    Ohmichi, E., Maeno, Y., Nagai, S., Mao, Z. Q., Tanatar, M. A., & Ishiguro, T. (2000). Magnetoresistance of \({\rm Sr}_2{\rm Ru}{\rm O}_4\) under high magnetic fields parallel to the conducting plane. Physical Review B, 61, 7101–7107.Google Scholar
  13. 13.
    Perry, R. S. (2001). Ph.D thesis, University of Birmingham.Google Scholar
  14. 14.
    Allen, P. B., Berger, H., Chauvet, O., Forro, L., Jarlborg, T., Junod, A., Revaz, B., et al. (1996). Transport properties, thermodynamic properties, and electronic structure of \({\rm SrRuO}_3\). Physical Review B, 53, 4393–4398.Google Scholar
  15. 15.
    Kanbayasi, A. (1976). Magnetic properties of \({\rm SrRuO}_3\) single crystal. Journal of the Physical Society of Japan, 41, 1876–1878.Google Scholar
  16. 16.
    Crawford, M., Harlow, R. L., Marshall, W., Li, Z., Cao, G., Lindstrom, R. L., et al. (2002). Structure and magnetism of single crystal \({\rm Sr}_4{\rm Ru}_3{\rm O}_{10}\): A ferromagnetic triple-layer ruthenate. Physical Review B, 65, 214412.Google Scholar
  17. 17.
    Cao, G., Balicas, L., Song, W. H., Sun, Y. P., Xin, Y., Bondarenko, V. A., et al. (2003). Competing ground states in triple-layered \({\rm Sr}_4{\rm Ru}_3{\rm O}_{10}\): Verging on itinerant ferromagnetism with critical fluctuations. Physical Review B, 68, 174409.Google Scholar
  18. 18.
    Zhou, M., Hooper, J., Fobes, D., Mao, Z. Q., Golub, V., & O’Connor, C. J. (2005). Electronic and magnetic properties of triple-layered ruthenate \({\rm Sr}_4{\rm Ru}_3{\rm O}_{10}\) single crystals grown by a floating-zone method. Materials Research Bulletin, 40, 942–950.Google Scholar
  19. 19.
    Shaked, H., Jorgensen, J. D., Chmaissem, O., Ikeda, S., & Maeno, Y. (2000). Neutron diffraction study of the structural distortions in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Journal of Solid State Chemistry, 154, 361–367.Google Scholar
  20. 20.
    Huang, Q., Lynn, J. W., Erwin, R. W., Jarupatrakorn, J. & Cava, R. J. (1998). Oxygen displacements and search for magnetic order in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Physical Review B, 58, 8515–8521.Google Scholar
  21. 21.
    Kiyanagi, R., Tsuda, K., Aso, N., Kimura, H., Noda, Y., Yoshida, Y., et al. (2004). Investigation of the structure of single crystal \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\) by neutron and convergent beam electron diffractions. Journal of the Physics Society Japan, 73, 639–642.Google Scholar
  22. 22.
    Matzdorf, R., Fang, Z., Ismail, Zhang, J., Kimura, T., Tokura, Y., Terakura, K., et al. (2000). Ferromagnetism stabilized by lattice distortion at the surface of the p-Wave superconductor \({\rm Sr}_2{\rm RuO}_4\). Science, 289, 746–748.Google Scholar
  23. 23.
    Matzdorf, R., Ismail, Kimura, T., Tokura, Y., & Plummer, E. W. (2002). Surface structural analysis of the layered perovskite \({\rm Sr}_2{\rm RuO}_4\) by LEED I(V ). Physical Review B, 65, 085404.Google Scholar
  24. 24.
    Bruin, J. A. N. (2012). Transport studies of the itinerant metamagnet \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\) near its quantum critical point. Ph.D thesis, University of St Andrews.Google Scholar
  25. 25.
    Tamai, A., Allan, M. P., Mercure, J.-F., Meevasana, W., Dunkel, R., Lu, D. H., et al. (2008). Fermi surface and van Hove singularities in the itinerant metamagnet \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Physical Review Letters, 101, 026407.Google Scholar
  26. 26.
    Mercure, J.-F., Rost, A. W., O’Farrell, E. C. T., Goh, S. K., Perry, R. S., Sutherland, M. L., et al. (2010). Quantum oscillations near the metamagnetic transition in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Physical Review B81, 235103.Google Scholar
  27. 27.
    Perry, R. S., & Maeno, Y. (2004). Systematic approach to the growth of high-quality single crystals of \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Journal of Crystal Growth, 271, 134–141.Google Scholar
  28. 28.
    Perry, R. S., Galvin, L. M., Grigera, S. A., Capogna, L., Schofield, A. J., Mackenzie, A. P., et al. (2001). Metamagnetism and critical fluctuations in high quality single crystals of the bilayer Ruthenate \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Physical Review Letters, 86, 2661–2664.Google Scholar
  29. 29.
    Stryjewski, E., & Giordano, N. (1977). Metamagnetism. Advances in Physics, 26, 487–650.Google Scholar
  30. 30.
    Blundell, S. J. (2001). Magnetism in condensed matter. ISBN 9780198505921, Oxford University Press.Google Scholar
  31. 31.
    Stoner, E. C. (1936). Collective electron specific heat and spin paramagnetism in metals. Proceedings of the Royal Society of London A, 154, 656–678.Google Scholar
  32. 32.
    Shimizu, M. (1965). On the conditions of ferromagnetism by the band model: II. Proceedings of the Physical Society, 86, 147–157.Google Scholar
  33. 33.
    Shimizu, M. (1982). Itinerant electron metamagnetism. Journal de Physique (France), 43, 155–163.Google Scholar
  34. 34.
    Wohlfarth, E. P., & Rhodes, P. (1962). Collective electron metamagnetism. Philosophical Magazine, 7, 1817–1824.Google Scholar
  35. 35.
    Fukamichi, K. (2006). Itinerant-electron metamagnetism. New York: Springer. ISBN 9781402079849.Google Scholar
  36. 36.
    Allan, M. P., Tamai, A., Rozbicki, E., Fischer, M. H., Voss, J., D C King, P., et al. (2013). Formation of heavy d-electron quasiparticles in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). New Journal of Physics, 15, 063029.Google Scholar
  37. 37.
    Binz, B., & Sigrist, M. (2004). Metamagnetism of itinerant electrons in multi-layer ruthenates. Europhysics Letters, 65, 816–822.Google Scholar
  38. 38.
    Kee, H. -Y., & Kim, Y. B. (2005). Itinerant metamagnetism induced by electronic nematic order. Physical Review B, 71, 184402.Google Scholar
  39. 39.
    Puetter, C., Doh, H., & Kee, H. -Y. (2007). Metanematic transitions in a bilayer system: Application to the bilayer ruthenate. Physical Review B, 76, 235112.Google Scholar
  40. 40.
    Yamase, H., & Katanin, A. A. (2007). Van Hove singularity and spontaneous Fermi surface symmetry breaking in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Journal of the Physical Society of Japan, 76, 073706.Google Scholar
  41. 41.
    Raghu, S., Paramekanti, A., Kim, E. A., Borzi, R. A., Grigera, S. A., Mackenzie, A. P., et al. (2009). Microscopic theory of the nematic phase in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Physical Review B, 79, 214402.Google Scholar
  42. 42.
    Lee, W. -C., & Wu, C. (2009). Theory of unconventional metamagnetic electron states in orbital band systems. Physical Review B, 80, 104438.Google Scholar
  43. 43.
    Fischer, M. H., & Sigrist, M. (2010). Effect of a staggered spin-orbit coupling on the occurrence of a nematic phase in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Physical Review B, 81, 064435.Google Scholar
  44. 44.
    Coleman, P., & Schofield, A. J. (2005). Quantum criticality. Nature, 433, 226–229.Google Scholar
  45. 45.
    Löhneysen, H. v., Pietrus, T., Portisch, G., Schlager, H. G., Schröder, A., Sieck, M., et al. (1994). Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability. Physical Review Letters, 72, 3262–3265.Google Scholar
  46. 46.
    Stewart, G. R. (2001). Non-Fermi-liquid behavior in d-and f-electron metals. Reviews of Modern Physics, 73, 797–855.Google Scholar
  47. 47.
    Grigera, S.A., Perry, R.S., Schofield, A.J., Chiao, M., Julian, S.R., Lonzarich, G.G., et al. (2001). Magnetic field-tunes quantum criticality in the metallic ruthenate \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Science, 294, 329–332.Google Scholar
  48. 48.
    Mathur, N. D., Grosche, F. M., Julian, S. R., Walker, I. R., Freye, D. M., Haselwimmer, R. K. W., et al. (1998). Magnetically mediated superconductivity in heavy fermion compounds. Nature, 394, 39–43.Google Scholar
  49. 49.
    Perry, R. S., Kitagawa, K., Grigera, S. A., Borzi, R. A., Mackenzie, A. P., Ishida, K., et al. (2004). Multiple first-order metamagnetic transitions and quantum oscillations in ultrapure \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Physical Review Letters, 92, 166602.Google Scholar
  50. 50.
    Fradkin, E. (2012). Electronic liquid crystal phases in strongly correlated systems. Heidelberg: Springer. ISBN 9783642104497.Google Scholar
  51. 51.
    Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P., & Mackenzie, A. P. (2010). Nematic Fermi fluids in condensed matter physics. Annual Review of Condensed Matter Physics, 1, 153–178.Google Scholar
  52. 52.
    Fradkin, E., & Kivelson, S. A. (2010). Electron nematic phases proliferate. Science, 327, 155–156.Google Scholar
  53. 53.
    Emery, V. J., Kivelson, S. A., & Tranquada, J. M. (1999). Stripe phases in high-temperature superconductors. Proceedings of the National Academy of Sciences, 96, 8814–8817.Google Scholar
  54. 54.
    Kivelson, S. A., Fradkin, E., & Emery, V. J. (1998). Electronic liquid-crystal phases of a doped Mott insulator. Nature, 393, 550–553.Google Scholar
  55. 55.
    Mross, D. F., & Senthil, T. (2012). Theory of a continuous stripe melting transition in a two-dimensional metal: A possible application to cuprate superconductors. Physical Review Letters, 108, 267001.Google Scholar
  56. 56.
    Mross, D. F., & Senthil, T. (2012). Stripe melting and quantum criticality in correlated metals. Physical Review B, 86, 115138.Google Scholar
  57. 57.
    Pomeranchuk, I. I. (1958). On the stability of a Fermi liquid. Soviet Physics Journal of Experimental and Theoretical Physics, 35, 524–525.Google Scholar
  58. 58.
    Bruin, J. A. N., Borzi, R. A., Grigera, S. A., Rost, A. W., Perry, R. S., & Mackenzie, A. P. (2013). Study of the electronic nematic phase of \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\) with precise control of the applied magnetic field vector. Physical Review B, 87, 161106.Google Scholar
  59. 59.
    Kitagawa, K., Ishida, K., Perry, R. S., Tayama, T., Sakakibara, T., & Maeno, Y. (2005). Metamagnetic quantum criticality revealed by \(^17\)O-NMR in the itinerant metamagnet \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Physical Review Letters, 95, 127001.Google Scholar
  60. 60.
    Sun, D., Rost, A., Perry, R., Mackenzie, A. P., & Brando, M. (2016). Low temperature thermodynamic investigation of the phase diagram of \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). arXiv:1605.00396.
  61. 61.
    Brodsky, D. O. (2015). Investigation of correlated electron systems under uni-axial strain. Ph.D thesis, University of St Andrews.Google Scholar
  62. 62.
    Brodsky, D. O., Barber, M. E., Bruin, J. A. N., Borzi, R. A., Grigera, S. A., Perry, R. S., et al. (2017). Strain and vector magnetic field tuning of the anomalous phase in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Science Advances, 3, e1501804.Google Scholar
  63. 63.
    Mercure, J. -F. (2008). The de Haas van Alphen effect near a quantum critical end point in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Ph.D thesis, University of St Andrews.Google Scholar
  64. 64.
    Laugier, J., & Filhol, A. (1983). An interactive program for the interpretation and simulation of Laue patterns. Journal of Applied Crystallography, 16, 281–283.Google Scholar
  65. 65.
    Shapiro, M. C., Hlobil, P., Hristov, A. T., Maharaj, A. V., & Fisher, I. R. (2015). Symmetry constraints on the elastoresistivity tensor. Physical Review B, 92, 235147.Google Scholar
  66. 66.
    Bergemann, C., Mackenzie, A. P., Julian, S. R., Forsythe, D., & Ohmichi, E. (2003). Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor \({\rm Sr}_2{\rm RuO}_4\). Advances in Physics, 52, 639–725.Google Scholar
  67. 67.
    Simpson, J. C., Lane, J. E., Immer, C. D., & Youngquist, R. C. (2001). Simple analytic expressions for the magnetic field of a circular current loop. NASA Technical Report Server 20140002333.Google Scholar
  68. 68.
    Babic, S., Sirois, F., Akyel, C. & Girardi, C. (2010). Mutual inductance calculation between circular filaments arbitrarily positioned in space: Alternative to Grover’s formula. IEEE Transactions on Magnetics, 46, 3591–3600.Google Scholar
  69. 69.
    Van Duyneveldt, A. J. (1982). Differential susceptibility as a magnetic probe: Some recent applications. Journal of Applied Physics, 53, 8006–8011.Google Scholar
  70. 70.
    Paglione, J., Lupien, C., MacFarlane, W. A., Perz, J. M., Taillefer, L., Mao, Z. Q., et al. (2002). Elastic tensor of \({\rm Sr}_2{\rm RuO}_4\). Physical Review B, 65, 220506.Google Scholar
  71. 71.
    Chu, J. -H., Kuo, H. -H., Analytis, J. G., & Fisher, I. R. (2012). Divergent nematic susceptibility in an iron arsenide superconductor. Science, 337, 710–712.Google Scholar
  72. 72.
    Chaikin, P. M., & Lubensky, T. C. (2000). Principles of condensed matter physics. Cambridge University Press. ISBN 9780521794503.Google Scholar
  73. 73.
    Rost, A. W., Perry, R. S., Mercure, J. -F., Mackenziel, A. P., & Grigera, S. A. (2009). Entropy landscape of phase formation associated with quantum criticality in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Science, 325, 1360–1363.Google Scholar
  74. 74.
    Stingl, C., Perry, R. S., Maeno, Y., & Gegenwart, P. (2013). Electronic nematicity and its relation to quantum criticality in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\) studied by thermal expansion. Physica Status Solidi (B), 250, 450–456.Google Scholar
  75. 75.
    Stingl, C., Perry, R. S., Maeno, Y., & Gegenwart, P. (2011). Symmetry-breaking lattice distortion in \({\rm Sr}_3{\rm Ru}_2{\rm O}_7\). Physical Review Letters, 107, 026404.Google Scholar
  76. 76.
    Muir, W. B., & Ström-Olsen, J. O. (1971). Electrical resistance of single-crystal single-domain chromium from 77 to 325 K. Physical Review B, 4, 988–991.Google Scholar
  77. 77.
    Kummamuru, R. K., & Soh, Y. -A. (2008). Electrical effects of spin density wave quantization and magnetic domain walls in chromium. Nature, 452, 859–863.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations