Advertisement

Seeing Red: Some Aspects of the Geological and Climatic History of the Australian Arid Zone

  • Brad J. Pillans
Chapter

Abstract

The iconic Red Centre of Australia broadly corresponds with the driest part of the continent – the Australian arid zone – suggesting that redness is related to aridity. However, the history of redness in Central Australia is longer than that of the Australian arid zone. In this chapter, I describe some aspects of the geological and climatic history of the Australian arid zone that led to its current form. There is palaeobotanical evidence of seasonal dryness from about 40 million years ago, but the first truly arid landscapes, the stony deserts, did not form until 3–4 million years ago, while the oldest dated sand dunes are around 1 million years old. The formation of red rocks and regolith is more constrained by atmospheric oxygen levels than by aridity and may extend back hundreds of millions of years.

Notes

Acknowledgements

I gratefully acknowledge Geoscience Australia for permission to publish figures from “Shaping a Nation” (Blewett 2012) under the Creative Commons Attribution 4.0 International Licence. John Wilford, Richard Blewett and Penny Kilgour (Geoscience Austral) are thanked for providing valuable assistance with figures, and I also thank John for stimulating discussion on remote sensing of redness. Paul Hesse (Macquarie University), Brent Alloway (Auckland University) and Andreas Buisman are also thanked for providing images.

References

  1. Abrajevitch A, Pillans BJ, Roberts AP (2014) Haematite pigmentation events and palaeomagnetic recording: implications from the Pilbara Print Stone, Western Australia. Geophys J Int 199:658–672CrossRefGoogle Scholar
  2. Alley NF, Frakes LA (2003) First known cretaceous glaciation: Livingston Tillite member of the Cadna-owie formation, South Australia. Aust J Earth Sci 50:139–144CrossRefGoogle Scholar
  3. Alley NF, Pledge NS (2000) The plants, animals and environments of the last 280 million years. In: Slaytor WJH (ed) The story behind the landscape, vol 5. Geographical Society of South Australia Monograph, pp 35–82Google Scholar
  4. Alley NF, Krieg GW, Callen RA (1996) Early Tertiary Eyre Formation, lower Nellie Creek, southern Lake Eyre Basin, Australia: palynological dating of macrofloras and silcrete, and palaeoclimatic interpretations. Aust J Earth Sci 43:71–84CrossRefGoogle Scholar
  5. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718PubMedCrossRefPubMedCentralGoogle Scholar
  6. An ZS, Bowler JM, Opdyke ND, Macumber PG, Firman JB (1986) Palaeomagnetic stratigraphy of Lake Bungunnnia: Plio-Pleistocene precursor of aridity in the Murray Basin, Southeastern Australia. Palaeogeogr Palaeoclimatol Palaeoecol 54:219–239CrossRefGoogle Scholar
  7. Ashworth AC, Cantrill DJ (2004) Neogene vegetation of the Meyer Desert formation (Sirius Group) Transantarctic Mountains, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 213:65–82CrossRefGoogle Scholar
  8. Bagas L (1988) Geology of Kings Canyon National Park, Northern Territory Geological Survey Report 4. Department of Mines & Energy, Daerwin, p 21Google Scholar
  9. Barrows TT, Stone JO, Fifield LK, Cresswell RG (2001) Late Pleistocene glaciation of the Kosciuszko Massif, Snowy Mountains, Australia. Quat Res 55:179–189CrossRefGoogle Scholar
  10. Bell, J.G., Kilgour, P.L., English, P.M., Woodgate, M.F., Lewis, S.J., Wischusen, J.D.H., 2012. WASANT Palaeovalley map – distribution of Palaeovalleys in Arid and Semi-arid WA-SA-NT (First Edition), scale 1:4 500 000. Geoscience Australia, CanberraGoogle Scholar
  11. Belton DX, Brown RW, Kohn BP, Fink D, Farley KA (2004) Quantitative resolution of the debate over antiquity of the central Australian landscape: implications for the tectonic and geomorphic stability of cratonic interiors. Earth Planet Sci Lett 219:21–34CrossRefGoogle Scholar
  12. Berner RA, Beerling DJ, Dudley R, Robinson JM, Wildman RA Jr (2003) Phanerozoic atmospheric oxygen. Annu Rev Earth Planet Sci 31:105–134CrossRefGoogle Scholar
  13. Bierman PR, Caffee M (2002) Cosmogenic exposure and erosion history of Australian bedrock landforms. Geol Soc Am Bull 114:787–803CrossRefGoogle Scholar
  14. Bird C, Hallam SJ (2006) Archaeology and rock art in the Dampier Archipelago. A report prepared for the National Trust of Australia (WA), p 32Google Scholar
  15. Blewett RS (2012) Shaping a nation: a geology of Australia. Geoscience Australia/ANU E Press, Canberra, p 571CrossRefGoogle Scholar
  16. Blodgett RH (1988) Calcareous paleosols in the Triassic Dolores Formation, southwestern Colorado. Geol Soc Am Spec Pap 216:103–121Google Scholar
  17. Bowler JM (1981) Australian salt lakes: a palaeohydrological approach. Hydrobiologia 82:431–444CrossRefGoogle Scholar
  18. Bowler JM (1982) Aridity in the late Tertiary and Quaternary of Australia. In: Barker WA, Greenslade PJM (eds) Evolution of the flora and fauna of arid Australia. Peacock Publications, Adelaide, pp 35–45Google Scholar
  19. Brad P, Keith Fifield L (2013) Erosion rates and weathering history of rock surfaces associated with Aboriginal rock art engravings (petroglyphs) on Burrup Peninsula, Western Australia, from cosmogenic nuclide measurements. Quat Sci Rev 69:98–106CrossRefGoogle Scholar
  20. Brocks JJ, Jarrett AJM, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T (2017) The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548:578PubMedCrossRefGoogle Scholar
  21. Bullard JE, White K (2002) Quantifying iron oxide coatings on dune sands using spectrometric measurements: an example from the Simpson-Strzelecki Desert, Australia. J Geophys Res 107(B6)Google Scholar
  22. Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J, Williams MAJ, Cooper S, Donnellan SC, Keogh JS, Leys R, Melville J, Murphy DJ, Porch N, Wyrwoll K-H (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol Ecol 17:4398–4417PubMedCrossRefGoogle Scholar
  23. Canfield DE, Poulton SW, Narbonne GM (2007) Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95PubMedCrossRefGoogle Scholar
  24. Carpenter RJ, Pole M (1995) Eocene plant fossils from the Lefroy and Cowan paleodrainages, Western Australia. Aust Syst Bot 8:1107–1154CrossRefGoogle Scholar
  25. Carpenter RJ, Goodwin MP, Hill RS, Kanold K (2011) Silcrete plant fossils from Lightning Ridge, New South Wales: new evidence for climate change and monsoon elements in the Australian Cenozoic. Aust J Bot 59:399–425CrossRefGoogle Scholar
  26. Carpenter RJ, Jordan GJ, Macphail MK, Hill RS (2012) Near-tropical Early Eocene terrestrial temperatures at the Australo-Antarctic margin, western Tasmania. Geology 40:267–270CrossRefGoogle Scholar
  27. Carpenter RJ, McLoughlan S, Hill RS, McNamara KJ, Jordan GJ (2014) Early evidence of xeromorphy in angiosperms: stomatal encryption in a new Eocene species of Banksia (Proteaceae) from Western Australia. Am J Bot 101:1486–1497PubMedCrossRefGoogle Scholar
  28. Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237:1–20CrossRefGoogle Scholar
  29. Chen XY, Barton CE (1991) Onset of aridity and dune-building in Central Australia: sedimentological and magnetostratigraphic evidence from Lake Amadeus. Palaeogeogr Palaeoclimatol Palaeoecol 84:55–71CrossRefGoogle Scholar
  30. Chen X, Ling H-F, Vance D, Shields-Zhou GA, Zhu M, Poulton SW, Och LM, Jiang S-Y, Li D, Cremonese L, Archer C (2015) Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat Commun 6:7142PubMedPubMedCentralCrossRefGoogle Scholar
  31. Christensen BA, Renema W, Hendriks J, De Vleeschower D, Groeneveld J, Castenada IS, Reuning L, Bogus K, Auer G, Ishiwa T, McHugh CM, Gallagher SJ, Fulthorpe CS, IODP Expedition 356 Scientists (2017) Indonesian throughflow drove Australian climate from humid Pliocene to arid Pleistocene. Geophys Res Lett 44:6914CrossRefGoogle Scholar
  32. Crowell JC, Frakes LA (1971) Late Paleozoic glaciation of Australia. J Geol Soc Aust 17:115–155CrossRefGoogle Scholar
  33. Danisik M, Evans NJ, Ramanaidou ER, McDonald BJ, Mayers C, McInnes BIA (2013) (U-Th)/He chronology of the Robe River channel iron deposits, Hamersley Province, Western Australia. Chem Geol 354:150–162CrossRefGoogle Scholar
  34. English PM, Spooner NA, Chappell J, Questiaux DG, Hill NG (2001) Lake Lewis Basin, Central Australia: environmental evolution and OSL chronology. Quat Int 83-85:81–101CrossRefGoogle Scholar
  35. English PM, Lewis SJ, Bell JG, Wischusen JDH, Woodgate MF, Bastrakov EN, Macphail MK, Kilgour PL (2012) Water for Australia’s arid zone – identifying and assessing Australia’s palaeovalley groundwater resources: project summation, waterlines report series no 86, August 2012, Canberra, p 147Google Scholar
  36. Eyles N, de Broekert P (2001) Glacial tunnel valleys in the Eastern Goldfields of Western Australia cut below the Late Paleozoic Pilbara ice sheet. Palaeogeogr Palaeoclimatol Palaeoecol 171:29–40CrossRefGoogle Scholar
  37. Flohn H (1973) Antarctica and the global Cenozoic evolution: a geophysical model. In: Van Zinderen Bakker EM (ed) Palaeoecology of Africa. Balkema, Netherlands, pp 37–53Google Scholar
  38. Folk RL (1976) Reddening of desert sands: Simpson Desert, N.T., Australia. J Sediment Petrol 46:604–615Google Scholar
  39. Frakes LA, Burger D, Apthorpe M, Wiseman J, Dettmann M, Alley N, Flint R, Gravestock D, Ludbrook N, Backhouse J, Skwarko S, Scheibnerova V, McMinn A, Moore PS, Bolton BR, Douglas JG, Christ R, Wade M, Molnar RE, McGowran B, Balme BE, Day RA (1987) Australian Cretaceous shorelines, stage by stage. Palaeogeogr Palaeoclimatol Palaeoecol 59:31–48CrossRefGoogle Scholar
  40. Fu X, Cohen TJ, Arnold LJ (2017) Extending the record of lacustrine phases beyond the last interglacial for Lake Eyre in Central Australia using luminescence dating. Quat Sci Rev 162:88–110CrossRefGoogle Scholar
  41. Fujioka T, Chappell J (2010) History of Australian aridity: chronology in the evolution of arid landscapes. Geol Soc Lond Spec Publ 346(1):121–139CrossRefGoogle Scholar
  42. Fujioka T, Chappell J, Honda M, Yatsevich I, Fifield K, Fabel D (2005) Global cooling initiated stony deserts in Central Australia 2-4 Ma, dated by cosmogenic 21Ne-10Be. Geology 33:993–996CrossRefGoogle Scholar
  43. Fujioka T, Chappell J, Fifield LK, Rhodes EJ (2009) Australian desert dunes initiated with Pliocene-Pleistocene global climatic shift. Geology 37:51–54CrossRefGoogle Scholar
  44. Glasspool IJ, Scott AC (2010) Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat Geosci 3(9):627–630CrossRefGoogle Scholar
  45. Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012) The geological time scale. Elsevier, Oxford, p 1142Google Scholar
  46. Greenwood DR (1996) Eocene monsoon forests in Central Australia? Aust Syst Bot 9:95–112CrossRefGoogle Scholar
  47. Greenwood DR, Haines PW, Steart DC (2001) New species of Banksieaeformis and a Banksia ‘Cone’ (Proteaceae) from the tertiary of Central Australia. Aust Syst Bot 14:871–890CrossRefGoogle Scholar
  48. Harris WK, Twidale CR (1991) Revised age for Ayers rock and the Olgas. Trans R Soc S Aust 115:109Google Scholar
  49. Heimsath AM, Chappell J, Fifield K (2010) Eroding Australia: rates and processes from Bega Valley to Arnhem Land. In: Bishop P, Pillans B (eds) Australian landscapes. The Geological Society of London, London, pp 225–241Google Scholar
  50. Hesse PP (1994) The record of continental dust from Australia in Tasman Sea sediments. Quat Sci Rev 13:257–272Google Scholar
  51. Hesse P (2003) Australian dust deposits: modern processes and the Quaternary record. Quat Sci Rev 22(18–19):2007–2035CrossRefGoogle Scholar
  52. Hoashi M, Bevacqua DC, Otake T, Watanabe Y, Hickman AH, Utsonomiya S, Ohmoto H (2009) Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nat Geosci 2:301–306CrossRefGoogle Scholar
  53. Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol Soc Am Bull 111:1256–1262CrossRefGoogle Scholar
  54. Hou B, Frakes LA, Sandiford M, Worrall L, Keeling J, Alley NF (2008) Cenozoic Eucla Basin and associated palaeovalleys, southern Australia – climatic and tectonic influences on landscape evolution, sedimentation and heavy mineral accumulation. Sediment Geol 203:112–130CrossRefGoogle Scholar
  55. Idnurm M, Senior BR (1978) Palaeomagnetic ages of late cretaceous and tertiary weathered profiles in the Eromanga Basin, Queensland. Palaeogeogr Palaeoclimatol Palaeoecol 24:263–277CrossRefGoogle Scholar
  56. Jennings JN, Mabbutt JA (1967) Landform studies from Australia and New Guinea. ANU Press, Canberra, 434 ppGoogle Scholar
  57. Johnson BJ, Miller GH, Fogel ML, Magee J, Gagan MK, Chivas AR (1999) 65,000 years of vegetation change in Central Australia and the Australian summer monsoon. Science 284:1150–1152PubMedCrossRefGoogle Scholar
  58. Jutson JT (1914) Physiographical geology (physiography) of Western Australia. Government Printer, PerthGoogle Scholar
  59. Kale Sniderman JM, Woodhead JD, Hellstrom J, Jordan GJ, Drysdale RN, Tyler JJ, Porch N (2016) Pliocene reversal of late Neogene aridification. Proc Natl Acad Sci 113(8):1999–2004PubMedCrossRefGoogle Scholar
  60. Karas C, Nurnberg D, Tiedemann R, Garbe-Schonberg D (2011) Pliocene Indonesian Throughflow and Leeuwin current dynamics: implications for Indian Ocean polar heat flux. Paleoceanography 26:PA2217CrossRefGoogle Scholar
  61. Kohn BP, Gleadow AJW, Brown RW, Gallagher K, O’Sullivan PB, Foster DA (2002) Shaping the Australian crust over the last 300 million years: insights from fission track thermotectonic imaging and denudation studies of key terranes. Aust J Earth Sci 49:697–717CrossRefGoogle Scholar
  62. Lagabrielle Y, Godderis Y, Donnadieu Y, Malavieille J, Suarez M (2009) The tectonic history of drake passage and its possible impacts on global climate. Earth Planet Sci Lett 279:197–211CrossRefGoogle Scholar
  63. Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr Palaeoclimatol Palaeoecol 198:11–37CrossRefGoogle Scholar
  64. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315PubMedCrossRefGoogle Scholar
  65. Mabbutt JA (1977) Desert landforms. ANU Press, CanberraGoogle Scholar
  66. Mack CL, Milne LA (2015) Eocene palynology of the Mulga Rocks deposits, Southern Gunbarrel Basin, Western Australia. Alcheringa 39:444–458CrossRefGoogle Scholar
  67. Macphail MK, Stone MS (2004) Age and palaeoenvironmental constraints on the genesis of the Yandi channel iron deposits, Marillana formation, Pilbara, Northwestern Australia. Aust J Earth Sci 51:497–520CrossRefGoogle Scholar
  68. Magee JW, Miller GH, Spooner NA, Questiaux D (2004) Continuous 150 k.y. monsoon record from Lake Eyre, Australia: insolation-forcing implications and unexpected Holocene failure. Geology 32:885–888CrossRefGoogle Scholar
  69. Martin HA (2006) Cenozoic climatic change and the development of arid vegetation in Australia. J Arid Environ 66:533–563CrossRefGoogle Scholar
  70. McBride EF (1974) Significance of color in red, green, purple, olive, brown, and gray beds of Difunta Group, Northeastern Mexico. J Sediment Petrol 44:760–773Google Scholar
  71. McKenzie N, Jacquier D, Isbell R, Brown K (2004) Australian soils and landscapes. An illustrated compendium. CSIRO Publishing, MelbourneGoogle Scholar
  72. Miller G, Mangan J, Pollard D, Thompson S, Felzer B, Magee J (2005) Sensitivity of the Australian monsoon to insolation and vegetation: implications for human impact on continental moisture balance. Geology 33:65–68CrossRefGoogle Scholar
  73. Miller CR, James NP, Bone Y (2012) Prolonged carbonate diagenesis under an evolving late cenozoic climate: Nullarbor Plain, Southern Australia. Sediment Geol 261-262:33–49CrossRefGoogle Scholar
  74. Miller GH, Fogel ML, Magee JW, Gagan MK (2016) Disentangling the impacts of climate and human colonization on the flora and fauna of the Australian arid zone over the past 100 ka using stable isotopes in avian eggshell. Quat Sci Rev 151:27–57CrossRefGoogle Scholar
  75. Molnar P, Cronin TW (2015) Growth of the maritime continent and its possible contribution to recurring ice ages. Paleoceanography 30:196–225CrossRefGoogle Scholar
  76. Morris RC, Ramanaidou ER (2007) Genesis of the channel iron deposits (CID) of the Pilbara region, Western Australia. Aust J Earth Sci 54:733–756CrossRefGoogle Scholar
  77. Morris RV, Lauer HV Jr, Lawson CA, Gibson EK Jr, Nace GA, Stewart C (1985) Spectral and other physicochemical properties of submicron powders of hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4), goethite (α-FeOOH) and lepidocrocite (γ-FeOOH). J Geophys Res 90:3126–3144PubMedCrossRefGoogle Scholar
  78. Mortimer N, Campbell HJ, Tulloch A, King PR, Stagpoole VM, Wood RA, Rattenbury MS, Sutherland R, Adams CJ, Collot J, Seton M (2017) Zealandia: earth’s hidden continent. GSA Today 27:27–35CrossRefGoogle Scholar
  79. Munsell Color Company (1975) Munsell soil colour charts. Macbeth Division of Kollmorgen, BaltimoreGoogle Scholar
  80. Nutman AP, Bennett VC, Friend CRL, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535PubMedCrossRefPubMedCentralGoogle Scholar
  81. Pain CF, Ollier CD (1995) Inversion of relief – a component of landscape evolution. Geomorphology 12:151–165CrossRefGoogle Scholar
  82. Pain CF, Pillans BJ, Roach IC, Worrall L, Wilford JR (2012) Old, flat and red – Australia’s distinctive landscape. In: Blewett RS (ed) Shaping a nation: a geology of Australia. Geoscience Australia and ANU E Press, Canberra, pp 226–275Google Scholar
  83. Pell SD, Chivas AR (1995) Surface features of sand grains from the Australian Continental Dunefield. Palaeogeogr Palaeoclimatol Palaeoecol 113:119–132CrossRefGoogle Scholar
  84. Pell SD, Chivas AR, Williams IS (1999) Great Victoria Desert: development and sand provenance. Aust J Earth Sci 46:289–299CrossRefGoogle Scholar
  85. Pell SD, Chivas AR, Williams IS (2000) The Simpson, Strzelecki and Tirari Deserts: development and sand provenance. Sediment Geol 130:107–130CrossRefGoogle Scholar
  86. Pillans B (2007) Pre-Quaternary landscape inheritance in Australia. J Quat Sci 22:439–447CrossRefGoogle Scholar
  87. Pillans B (2010) Late Carboniferous-Early Permian paleomagnetic poles from regolith in cratonic Australia. J Geol Soc Aust Abstr 98:74–75Google Scholar
  88. Pillans B, Bourman R (2001) Mid Pleistocene arid shift in Southern Australia, dated by magnetostratigraphy. Aust J Soil Res 39:89–98CrossRefGoogle Scholar
  89. Playford PE, Cockbain AE, Berry PF, Roberts AP, Haines PW, Brooke BP (2013) The geology of Shark Bay, geological survey of Western Australia Bulletin 146. Geological Survey of Western Australia, Perth, p 281Google Scholar
  90. Pole MS, Macphail MK (1996) Eocene Nypa from Regatta Point, Tasmania. Rev Palaeobot Palynol 92(1–2):55–67CrossRefGoogle Scholar
  91. Prideaux GJ, Long JA, Ayliffe LK, Hellstrom JC, Pillans B, Boles WE, Hutchinson MN, Roberts RG, Cupper ML, Arnold LJ, Devine PD, Warburton NM (2007) An arid-adapted middle Pleistocene vertebrate fauna from south-central Australia. Nature 445(7126):422–425PubMedCrossRefGoogle Scholar
  92. Ramanaidou ER, Morris RC, Horwitz RC (2003) Channel iron deposits of the Hamersley Province, Western Australia. Aust J Earth Sci 50:669–690CrossRefGoogle Scholar
  93. Rasmussen B, Buick R (1999) Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250-2750 a sandstones from the Pilbara Craton, Australia. Geology 27:115–118CrossRefGoogle Scholar
  94. Rasmussen B, Fletcher IR, Muhling JR, Thorne WS, Broadbent GC (2007) Prolonged history of episodic fluid flow in giant hematite ore bodies: evidence from U-Pb geochronology of hydrothermal xenotime. Earth Planet Sci Lett 258:249–259CrossRefGoogle Scholar
  95. Rasmussen B, Fletcher IR, Bekker A, Muhling JR, Gregory CJ, Thorne AM (2012) Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth. Nature 484:498–501PubMedCrossRefGoogle Scholar
  96. Rasmussen B, Krapež B, Meier DB (2014a) Replacement origin for hematite in 2.5 Ga banded iron formation: evidence for postdepositional oxidation of iron-bearing minerals. Geol Soc Am Bull 136:438–446CrossRefGoogle Scholar
  97. Rasmussen B, Krapež B, Muhling JR (2014b) Hematite replacement of iron-bearing precursor sediments in the 3.46-b.y.-old Marble Bar Chert, Pilbara craton, Australia. Geol Soc Am Bull 126:1245–1258CrossRefGoogle Scholar
  98. Rey PF (2013) Opalisation of the Great Artesian Basin (Central Australia): an Australian story with a Martian twist. Aust J Earth Sci 60:291–314CrossRefGoogle Scholar
  99. Rossman GR (1996) Why hematite is red: correlation of optical absorption intensities and magnetic moments of Fe3+ minerals. In: Dyar MD, McGammon C, Schaefer MW (eds) Mineral spectroscopy: a tribute to Roger G. Burns. The Geochemical Society, special publication no 5, pp 23–27Google Scholar
  100. Sandiford M (2007) The tilting continent: a new constraint on the dynamic topographic field from Australia. Earth Planet Sci Lett 261:152–163CrossRefGoogle Scholar
  101. Scher HD, Whittaker JM, Williams SE, Latimer JC, Kordesch WEC, Delaney ML (2015) Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature 523:580–583PubMedCrossRefPubMedCentralGoogle Scholar
  102. Schmidt PW, Clark DA (1994) Palaeomagnetism and magnetic anisotropy of Proterozoic banded-iron formations and iron ores of the Hamersley Basin, Western Australia. Precambrian Res 69:133–155CrossRefGoogle Scholar
  103. Schmidt PW, Williams GE (2017) Paleomagnetic age of ferruginous weathering beneath the Hamersley surface, Pilbara, Western Australia, and the Cenozoic apparent polar wander path. Aust J Earth Sci 64:239–249CrossRefGoogle Scholar
  104. Sheppard S, Krapez B, Zi J-W, Rasmussen B, Fletcher IR (2017) Young ores in old rocks: Proterozoic iron mineralisation in Mesoarchean banded iron formation, northern Pilbara Craton, Australia. Ore Geol Rev 89:40–67CrossRefGoogle Scholar
  105. Smith ML, Pillans BJ, McQueen KG (2009) Paleomagnetic evidence for periods of intense oxidative weathering, McKinnons mine, Cobar, New South Wales. Aust J Earth Sci 56:201–212CrossRefGoogle Scholar
  106. Stewart AJ, Blake DH, Ollier CD (1986) Cambrian river terraces and ridgetops in Central Australia: oldest persisting landforms? Science 233:758–761PubMedCrossRefGoogle Scholar
  107. Stuut J-BW, Temmesfeld F, De Deckker P (2014) A 550 ka record of aeolian activity near North West Cape, Australia: inferences from grain-size distributions and bulk chemistry of SE Indian Ocean deep-sea sediments. Quat Sci Rev 83:83–94CrossRefGoogle Scholar
  108. Sweet IP, Stewart AJ, Crick IH (2012) Uluru and Kata Tjuta: a geological guide. Geoscience Australia, Canberra, 63 ppGoogle Scholar
  109. Thomas M, Clarke JDA, Pain CF (2005) Weathering, erosion and landscape processes on Mars identified from recent rover imagery, and possible earth analogues. Aust J Earth Sci 52:365–378CrossRefGoogle Scholar
  110. Thornbury WD (1954) Principles of geomorphology. Wiley, New YorkGoogle Scholar
  111. Travouillon KJ, Legendre S, Archer M, Hand SJ (2009) Palaeoecological analyses of Riversleigh’s Oligo-Miocene sites: Implications for Oligo-Miocene climate change in Australia. Palaeogeogr Palaeoclimatol Palaeoecol 276(1–4):24–37CrossRefGoogle Scholar
  112. Twidale CR (1976) On the survival of paleoforms. Am J Sci 276:77–95CrossRefGoogle Scholar
  113. Valley JW, Cavosie AJ, Ushikubo T, Reinhard DA, Lawrence DF, Larson DJ, Clifton PH, Kelly TF, Wilde SA, Moser DE, Spicuzza MJ (2014) Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci 7:219–223CrossRefGoogle Scholar
  114. Vasconcelos PM, Heim JA, Farley KA, Monteiro H, Waltenberg K (2013) 40Ar/39Ar and (U-Th)/He – 4He/3He geochronology of landscape evolution and channel iron deposit genesis at Lynn Peak, Western Australia. Geochim Cosmochim Acta 117:283–312CrossRefGoogle Scholar
  115. Viscarra Rossel RA, Minasny B, Roudier P, McBratney AB (2006) Colour space models in soil science. Geoderma 133:320–337CrossRefGoogle Scholar
  116. Viscarra Rossel RA, Bui EN, de Caritat P, McKenzie NJ (2010) Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra. J Geophys Res 115:F04031CrossRefGoogle Scholar
  117. Walker TR (1979) Red color in dune sand. In: McKee ED (ed) A study of global sand seas. US Government Printer, Washington, DC, pp 61–81Google Scholar
  118. Wasson RJ (1983) Dune sediment types, sand colour, sediment provenance and hydrology in the Strzelecki-Simpson dunefield, Australia. In: Brookfield ME, Ahlbrandt TS (eds) Eolian sediments and processes. Elsevier, Amsterdam, pp 165–195CrossRefGoogle Scholar
  119. Weber UD, Kohn BP, Gleadow AJW, Nelson DR (2005) Low temperature Phanerozoic history of the Northern Yilgarn Craton, Western Australia. Tectonophysics 400:127–151CrossRefGoogle Scholar
  120. West MD, Clarke JDA, Thomas M, Pain CF, Walter MR (2010) The geology of Australian Mars analogue sites. Planet Space Sci 58:447–458CrossRefGoogle Scholar
  121. Wilford J (2012) A weathering index for the Australian continent using airborne gamma-ray spectrometry and digital terrain analysis. Geoderma 183–184:124–142CrossRefGoogle Scholar
  122. Woodburne MO, MacFadden BJ, Case JA, Springer MS, Pledge NS, Power JD, Woodburne JM, Springer KB (1994) Land mammal biostratigraphy and magnetostratigraphy of the Etadunna formation (late Oligocene) of South Australia. J Vertebr Paleontol 13:483–515CrossRefGoogle Scholar
  123. Woodhead J, Hand SJ, Archer M, Graham I, Sniderman K, Arena DA, Black KH, Godthelp H, Creaser P, Price E (2016) Developing a radiometrically-dated chronologic sequence for Neogene biotic change in Australia, from the Riversleigh World Heritage Area of Queensland. Gondwana Res 29(1):153–167CrossRefGoogle Scholar
  124. Wopfner H, Twidale CR (1988) Formation and age of desert dunes in the Lake Eyre depocentres in Central Australia. Geol Rundsch 77:815–834CrossRefGoogle Scholar
  125. Yapp CJ, Shuster DL (2017) D/H of late Miocene meteoric waters in Western Australia: Paleoenvironmental conditions inferred from the δD of (U-Th)/He-dated CID goethite. Geochim Cosmochim Acta 213:110–136CrossRefGoogle Scholar
  126. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693PubMedCrossRefPubMedCentralGoogle Scholar
  127. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283PubMedCrossRefPubMedCentralGoogle Scholar
  128. Zheng H, Wyrwoll K-H, Li Z, Powell CM (1998) Onset of aridity in Southern Western Australia – a preliminary palaeomagnetic appraisal. Glob Planet Chang 18:175–187CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research School of Earth SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations