Advertisement

A Comparative Evaluation of Log-Based Process Performance Analysis Techniques

  • Fredrik Milani
  • Fabrizio M. Maggi
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 320)

Abstract

Process mining has gained traction over the past decade and an impressive body of research has resulted in the introduction of a variety of process mining approaches measuring process performance. Having this set of techniques available, organizations might find it difficult to identify which approach is best suited considering context, performance indicator, and data availability. In light of this challenge, this paper aims at introducing a framework for categorizing and selecting performance analysis approaches based on existing research. We start from a systematic literature review for identifying the existing works discussing how to measure process performance based on information retrieved from event logs. Then, the proposed framework is built starting from the information retrieved from these studies taking into consideration different aspects of performance analysis.

Keywords

Process mining Performance analysis Evaluation framework 

Notes

Acknowledgments

This project and research is supported by Archimedes Foundation and GoSwift OÜ under the Framework of Support for Applied Research in Smart Specialization Growth Areas.

References

  1. 1.
    van der Aalst, W.M.P.: Process discovery: an introduction. In: Process Mining, pp. 125–156. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19345-3_5
  2. 2.
    van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer (2016)Google Scholar
  3. 3.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rew Data Min. Knowl. Discov. 2(2), 182–192 (2012)CrossRefGoogle Scholar
  4. 4.
    Arpasat, P., Porouhan, P., Premchaiswadi, W.: Improvement of call center customer service in a Thai bank using Disco fuzzy mining algorithm. In: ICT and Knowledge Engineering, pp. 90–96 (2015)Google Scholar
  5. 5.
    Ballambettu, N.P., Suresh, M.A., Bose, R.P.J.C.: Analyzing process variants to understand differences in key performance indices. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 298–313. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59536-8_19CrossRefGoogle Scholar
  6. 6.
    Jagadeesh Chandra Bose, R.P., Gupta, A., Chander, D., Ramanath, A., Dasgupta, K.: Opportunities for process improvement: a cross-clientele analysis of event data using process mining. In: Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 444–460. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48616-0_31CrossRefGoogle Scholar
  7. 7.
    Cho, M., Song, M., Yoo, S.: A systematic methodology for outpatient process analysis based on process mining. In: Ouyang, C., Jung, J.-Y. (eds.) AP-BPM 2014. LNBIP, vol. 181, pp. 31–42. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08222-6_3CrossRefGoogle Scholar
  8. 8.
    Conforti, R., Dumas, M., La Rosa, M., Maaradji, A., Nguyen, H., Ostovar, A., Raboczi, S.: Analysis of business process variants in Apromore. In: BPM Demos, pp. 16–20 (2015)Google Scholar
  9. 9.
    van Dongen, B.F., Adriansyah, A.: Process mining: fuzzy clustering and performance visualization. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 158–169. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12186-9_15CrossRefGoogle Scholar
  10. 10.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management, 2nd edn. Springer (2018)CrossRefGoogle Scholar
  11. 11.
    Engel, R., Krathu, W., Zapletal, M., Pichler, C., Bose, R.J.C., van der Aalst, W.M.P., Werthner, H., Huemer, C.: Analyzing inter-organizational business processes. Inf. Syst. e-Bus. Manag. 14(3), 577–612 (2016)CrossRefGoogle Scholar
  12. 12.
    Ganesha, K., Supriya, K.V., Soundarya, M.: Analyzing the waiting time of patients in hospital by applying heuristics process miner. In: ICICCT, pp. 500–505 (2017)Google Scholar
  13. 13.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75183-0_24CrossRefGoogle Scholar
  14. 14.
    Günther, C.W., Rozinat, A.: Disco: discover your processes. In: BPM Demos, pp. 40–44 (2012)Google Scholar
  15. 15.
    Hachicha, M., Fahad, M., Moalla, N., Ouzrout, Y.: Performance assessment architecture for collaborative business processes in BPM-SOA-based environment. Data Knowl. Eng. 105, 73–89 (2016)CrossRefGoogle Scholar
  16. 16.
    Hammer, M.: What is business process management? In: Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1. International Handbooks on Information Systems, pp. 3–16. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-00416-2_1
  17. 17.
    Hompes, B.F.A., Buijs, J.C.A.M., van der Aalst, W.M.P.: A generic framework for context-aware process performance analysis. In: Debruyne, C., et al. (eds.) On the Move to Meaningful Internet Systems: OTM 2016 Conferences. OTM 2016. LNCS, vol. 10033, pp. 300–317. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48472-3_17CrossRefGoogle Scholar
  18. 18.
    Huang, Z., Lu, X., Duan, H.: Resource behavior measure and application in business process management. Expert Syst. Appl. 39(7), 6458–6468 (2012)CrossRefGoogle Scholar
  19. 19.
    Jaisook, P., Premchaiswadi, W.: Time performance analysis of medical treatment processes by using Disco. In: ICT and Knowledge Engineering, pp. 110–115 (2015)Google Scholar
  20. 20.
    Kitchenham, B.: Procedures for performing systematic reviews. Keele University, Keele, UK, 33, pp. 1–26 (2004)Google Scholar
  21. 21.
    de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general framework for correlating business process characteristics. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 250–266. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10172-9_16CrossRefGoogle Scholar
  22. 22.
    de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016)CrossRefGoogle Scholar
  23. 23.
    Leyer, M.: Towards A context-aware analysis of business process performance. In: PACIS 2011: Quality Research in Pacific Asia, p. 108 (2011)Google Scholar
  24. 24.
    Mans, R.S., Schonenberg, M., Song, M., van der Aalst, W.M.P., Bakker, P.J.: Application of process mining in healthcare-a case study in a Dutch hospital. In: BIOSTEC, pp. 425–438 (2008)CrossRefGoogle Scholar
  25. 25.
    Nakatumba, J., van der Aalst, W.M.P.: Analyzing resource behavior using process mining. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 69–80. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12186-9_8CrossRefGoogle Scholar
  26. 26.
    Nguyen, H., Dumas, M., ter Hofstede, A.H.M., La Rosa, M., Maggi, F.M.: Business process performance mining with staged process flows. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 167–185. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39696-5_11CrossRefGoogle Scholar
  27. 27.
    Nogayama, T., Takahashi, H.: Estimation of average latent waiting and service times of activities from event logs. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 172–179. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23063-4_11CrossRefGoogle Scholar
  28. 28.
    Pande, P.S., Neuman, R.P., Cavanagh, R.R.: The Six Sigma Way. McGraw-Hill (2000)Google Scholar
  29. 29.
    Park, J., Lee, D., Zhu, J.: An integrated approach for ship block manufacturing process performance evaluation: case from a Korean shipbuilding company. Int. J. Prod. Econ. 156, 214–222 (2014)CrossRefGoogle Scholar
  30. 30.
    Park, M., Song, M., Baek, T.H., Son, S.Y., Ha, S.J., Cho, S.W.: Workload and delay analysis in manufacturing process using process mining. In: Bae, J., Suriadi, S., Wen, L. (eds.) AP-BPM 2015. LNBIP, vol. 219, pp. 138–151. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19509-4_11CrossRefGoogle Scholar
  31. 31.
    Perimal-Lewis, L., Teubner, D., Hakendorf, P., Horwood, C.: Application of process mining to assess the data quality of routinely collected time-based performance data sourced from electronic health records by validating process conformance. Health Inform. J. 22(4), 1017–1029 (2016)CrossRefGoogle Scholar
  32. 32.
    Piessens, D., Wynn, M.T., Adams, M.J., van Dongen, B.F.: Performance analysis of business process models with advanced constructs. In: Australasian Conference on Information Systems (2010)Google Scholar
  33. 33.
    Pika, A., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., Leyer, M., van der Aalst, W.M.P.: An extensible framework for analysing resource behaviour using event logs. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 564–579. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07881-6_38CrossRefGoogle Scholar
  34. 34.
    Premchaiswadi, W., Porouhan, P.: Process modeling and bottleneck mining in online peer-review systems. SpringerPlus 4(1), 441 (2015)CrossRefGoogle Scholar
  35. 35.
    Reijers, H.A., Song, M., Jeong, B.: On the performance of workflow processes with distributed actors: does place matter? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 32–47. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75183-0_3CrossRefGoogle Scholar
  36. 36.
    Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining – predicting delays in service processes. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 42–57. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07881-6_4CrossRefGoogle Scholar
  37. 37.
    Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay prediction in multi-class service processes. Inf. Syst. 53, 278–295 (2015)CrossRefGoogle Scholar
  38. 38.
    Senderovich, A., Weidlich, M., Yedidsion, L., Gal, A., Mandelbaum, A., Kadish, S., Bunnell, C.A.: Conformance checking and performance improvement in scheduled processes: a queueing-network perspective. Inf. Sys. 62, 185–206 (2016)CrossRefGoogle Scholar
  39. 39.
    Suriadi, S., Mans, R.S., Wynn, M.T., Partington, A., Karnon, J.: Measuring patient flow variations: a cross-organisational process mining approach. In: Ouyang, C., Jung, J.-Y. (eds.) AP-BPM 2014. LNBIP, vol. 181, pp. 43–58. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08222-6_4CrossRefGoogle Scholar
  40. 40.
    Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Event interval analysis: why do processes take time? Dec. Supp. Syst. 79, 77–98 (2015)CrossRefGoogle Scholar
  41. 41.
    Wang, Y., Caron, F., Vanthienen, J., Huang, L., Guo, Y.: Acquiring logistics process intelligence: methodology and an application for a chinese bulk port. Expert Syst. Appl. 41(1), 195–209 (2014)CrossRefGoogle Scholar
  42. 42.
    Wombacher, A., Iacob, M.: Start time and duration distribution estimation in semi-structured processes. In: SAC, pp. 1403–1409 (2013)Google Scholar
  43. 43.
    Wongvigran, S., Premchaiswadi, W.: Analysis of call-center operational data using role hierarchy miner. In: ICT and Knowledge Engineering, pp. 142–146 (2015)Google Scholar
  44. 44.
    Yampaka, T., Chongstitvatana, P.: An application of process mining for queueing system in health service. In: JCSSE, pp. 1–6 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of TartuTartuEstonia

Personalised recommendations