Advertisement

Fast Incremental Conformance Analysis for Interactive Process Discovery

  • P. M. Dixit
  • J. C. A. M. Buijs
  • H. M. W. Verbeek
  • W. M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 320)

Abstract

Interactive process discovery allows users to specify domain knowledge while discovering process models with the help of event logs. Typically the coherence of an event log and a process model is calculated using conformance analysis. Many state-of-the-art conformance techniques emphasize on the correctness of the results, and hence can be slow, impractical and undesirable in interactive process discovery setting, especially when the process models are complex. In this paper, we present a framework (and its application) to calculate conformance fast enough to guide the user in interactive process discovery. The proposed framework exploits the underlying techniques used for interactive process discovery in order to incrementally update the conformance results. We trade the accuracy of conformance for performance. However, the user is also provided with some diagnostic information, which can be useful for decision making in an interactive process discovery setting. The results show that our approach can be considerably faster than the traditional approaches and hence better suited in an interactive setting.

Keywords

Incremental conformance Interactive process discovery Domain knowledge Process mining 

References

  1. 1.
    van der Aalst, W.M.P.: Decomposing petri nets for process mining: a generic approach. Distrib. Parallel Databases 31(4), 471–507 (2013)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  3. 3.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: 2011 15th IEEE International Enterprise Distributed Object Computing Conference (EDOC), pp. 55–64. IEEE (2011)Google Scholar
  4. 4.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards robust conformance checking. In: zur Muehlen, M., Su, J. (eds.) BPM 2010. LNBIP, vol. 66, pp. 122–133. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20511-8_11CrossRefGoogle Scholar
  5. 5.
    vanden Broucke, S.K.L.M., Munoz-Gama, J., Carmona, J., Baesens, B., Vanthienen, J.: Event-based real-time decomposed conformance analysis. In: Meersman, R., Panetto, H., Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014. LNCS, vol. 8841, pp. 345–363. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45563-0_20CrossRefGoogle Scholar
  6. 6.
    Carmona, J.: The alignment of formal, structured and unstructured process descriptions. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol. 10258, pp. 3–11. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57861-3_1CrossRefGoogle Scholar
  7. 7.
    de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: Aligning event logs and declarative process models for conformance checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 82–97. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32885-5_6CrossRefGoogle Scholar
  8. 8.
    Desel, J., Esparza, J.: Free Choice Petri Nets, vol. 40. Cambridge University Press, Cambridge (2005)MATHGoogle Scholar
  9. 9.
    Esparza, J.: Synthesis rules for Petri nets, and how they lead to new results. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 182–198. Springer, Heidelberg (1990).  https://doi.org/10.1007/BFb0039060CrossRefGoogle Scholar
  10. 10.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06257-0_6CrossRefGoogle Scholar
  11. 11.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Software & Systems Modeling, July 2016CrossRefGoogle Scholar
  12. 12.
    Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using process mining. In: RADAR+EMISA, vol. 1859, pp. 72–80 (2017)Google Scholar
  13. 13.
    Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-Entry Single-Exit decomposed conformance checking. Inf. Syst. 46, 102–122 (2014)CrossRefGoogle Scholar
  14. 14.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  15. 15.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)CrossRefGoogle Scholar
  16. 16.
    Taymouri, F., Carmona, J.: Model and event log reductions to boost the computation of alignments (2016)Google Scholar
  17. 17.
    Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior of large structured process models. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 197–214. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_12CrossRefGoogle Scholar
  18. 18.
    Vázquez-Barreiros, B., van Zelst, S.J., Buijs, J.C.A.M., Lama, M., Mucientes, M.: Repairing alignments: striking the right nerve. In: Schmidt, R., Guédria, W., Bider, I., Guerreiro, S. (eds.) BPMDS/EMMSAD-2016. LNBIP, vol. 248, pp. 266–281. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39429-9_17CrossRefGoogle Scholar
  19. 19.
    Verbeek, H.M.W.: Decomposed replay using hiding and reduction as abstraction. In: Koutny, M., Kleijn, J., Penczek, W. (eds.) Transactions on Petri Nets and Other Models of Concurrency XII. LNCS, vol. 10470, pp. 166–186. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-55862-1_8CrossRefGoogle Scholar
  20. 20.
    Verbeek, H.M.W., van der Aalst, W.M.P., Munoz-Gama, J.: Divide and conquer: a tool framework for supporting decomposed discovery in process mining. Comput. J. 60(11), 1649–1674 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • P. M. Dixit
    • 1
    • 2
  • J. C. A. M. Buijs
    • 1
  • H. M. W. Verbeek
    • 1
  • W. M. P. van der Aalst
    • 3
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Philips ResearchEindhovenThe Netherlands
  3. 3.RWTHAachenGermany

Personalised recommendations