Bioregenerative Life Support Systems in Space Research

  • Donat-Peter Häder
  • Markus Braun
  • Ruth Hemmersbach
Part of the SpringerBriefs in Space Life Sciences book series (BRIEFSSLS)


For manned long-term missions e.g. to Mars, large amounts of food and oxygen are required to sustain the astronauts during the months- or year-long travel in space but resources are very limited. Water is already routinely recycled on the ISS. In order to solve the problem of limited food and oxygen resources, bioregenerative life support systems are envisioned with closed nutrient and gas loops. Several ecological model systems varying in the degree of complexity have already been investigated on ground and tested on shorter space flights. Photosynthetic organisms such as flagellates or higher plants produce oxygen when light is available. Simultaneously they take up the carbon dioxide exhaled by the astronauts or other consumers. Urea and ammonia can be detoxified by bacteria. Insertion of a component of primary consumers such as ciliates could be used to produce fish for human consumption.


Life support system Oxygen Carbon dioxide Aquarack Aquacells OmegaHab C.E.B.A.S. Eu:CROPIS MELISSA 


  1. Anken RH, Baur U, Hilbig R (2010) Clinorotation increases the growth of utricular otoliths of developing cichlid fish. Microgravity Sci Technol 22:151–154CrossRefGoogle Scholar
  2. Anken R, Brungs S, Grimm D, Knie M, Hilbig R (2016) Fish inner ear otolith growth under real microgravity (spaceflight) and clinorotation. Microgravity Sci Technol 28:351–356CrossRefGoogle Scholar
  3. Barta DJ (2017) Getting out of orbit: water recycling requirements and technology needs for long duration missions away from earthGoogle Scholar
  4. Bluem V, Paris F (2001) Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology. Acta Astronaut 48:287–297CrossRefPubMedGoogle Scholar
  5. Blüm V (2003) Aquatic modules for bioregenerative life support systems: developmental aspects based on the space flight results of the C.E.B.A.S. mini-module. Adv Space Res 31:1683–1691CrossRefPubMedGoogle Scholar
  6. Brungs S, Hauslage J, Hilbig R, Hemmersbach R, Anken R (2011) Effects of simulated weightlessness on fish otolith growth: clinostat versus rotating-wall vessel. Adv Space Res 48:792–798CrossRefGoogle Scholar
  7. Cucinotta FA, Kim M-HY, Chappell LJ, Huff JL (2013) How safe is safe enough? Radiation risk for a human mission to Mars. PLoS One 8:e74988CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dweik RA, Laskowski D, Abu-Soud HM, Kaneko F, Hutte R, Stuehr DJ, Erzurum SC (1998) Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism. J Clin Investig 101:660CrossRefPubMedGoogle Scholar
  9. Fulget N, Poughon L, Richalet J, Lasseur C (1999) MELISSA: global control strategy of the artificial ecosystem by using first principles models of the compartments. Adv Space Res 24:397–405CrossRefPubMedGoogle Scholar
  10. Godia F, Albiol J, Montesinos J, Pérez J, Creus N, Cabello F, Mengual X, Montras A, Lasseur C (2002) MELISSA: a loop of interconnected bioreactors to develop life support in space. J Biotechnol 99:319–330CrossRefPubMedGoogle Scholar
  11. Gòdia F, Albiol J, Pérez J, Creus N, Cabello F, Montras A, Masot A, Lasseur C (2004) The MELISSA pilotplant facility as an integrated test-bed for advanced life support systems. Adv Space Res 34:1483–1493CrossRefPubMedGoogle Scholar
  12. Häder D-P (1994) Real-time tracking of microorganisms. Binary 6:81–86Google Scholar
  13. Häder D-P, Kreuzberg K (1990) Algal bioreactor-concept and experiment design. Proceedings of the workshop (DARA/CNES) on artificial ecological systems, 24–26 October 1990, MarseilleGoogle Scholar
  14. Häder D-P, Richter PR, Strauch SM, Schuster M (2006) Aquacells – flagellates under long-term microgravity and potential usage for life support systems. Microgravity Sci Technol 18:210–214CrossRefGoogle Scholar
  15. Hauslage J, Strauch SM, Eßmann O, Haag FWM, Richter P, Krüger J, Julia Stoltze J, Becker I, Adeel Nasir A, Bornemann G, Müller H, Delovski T, Berger T, Rutczynska A, Lebert M (2018) Eu:CROPIS – Euglena combined regenerative organic-food production in space. A compact satellite mission testing biological life support systems under lunar and Martian gravityGoogle Scholar
  16. Hilbig R, Anken R (2017) Impact of micro-and hypergravity on neurovestibular issues of fish. In: Hilbig R, Gollhofer A, Bock O, Manzey D (eds) Sensory motor and behavioral research in space. Springer, Heidelberg, pp 59–86CrossRefGoogle Scholar
  17. Knox JC, Gauto H, Miller LA (2015) Development of a test for evaluation of the hydrothermal stability of sorbents used in closed-loop CO2 removal systems. 45th international conference on environmental systems, 12–16 July 2015. Bellevue, WAGoogle Scholar
  18. Kolvenbach H (2014) Development of an atmosphere management system for bio-regenerative life support systems. RWTH, AachenGoogle Scholar
  19. Lasseur C, Brunet J, De Weever H, Dixon M, Dussap G, Godia F, Leys N, Mergeay M, Van Der Straeten D (2010) MELISSA: the European project of closed life support system. Gravit Space Res 23:3–12Google Scholar
  20. Lebert M, Häder D-P (1998) Aquarack: long-term growth facility for ‘professional’ gravisensing cells. Proceedings of the 2nd European symposium on the utilisation of the international space station, ESTEC, Noordwijk, The Netherlands. 16–18 November 1998 (ESA-SP 433)Google Scholar
  21. Lebert M, Porst M, Häder D-P (1995) Long-term culture of Euglena gracilis: an AQUARACK progress report. Proceedings of the 11th C.E.B.A.S. workshops. Annual issue 1995, Ruhr-University of BochumGoogle Scholar
  22. Li X, Anken RH, Wang G, Hilbig R, Liu Y (2011) Effects of wall vessel rotation on the growth of larval zebrafish inner ear otoliths. Microgravity Sci Technol 23:13–18CrossRefGoogle Scholar
  23. Li X, Anken R, Liu L, Wang G, Liu Y (2017a) Effects of simulated microgravity on otolith growth of larval zebrafish using a rotating-wall vessel: appropriate rotation speed and fish developmental stage. Microgravity Sci Technol 29:1–8CrossRefGoogle Scholar
  24. Li X, Richter PR, Hao Z, An Y, Wang G, Li D, Liu Y, Strauch SM, Schuster M, Haag FW (2017b) Operation of an enclosed aquatic ecosystem in the Shenzhou-8 mission. Acta Astronaut 134:17–22CrossRefGoogle Scholar
  25. Montoye HJ, Washburn R, Servais S, Ertl A, Webster JG, Nagle FJ (1983) Estimation of energy expenditure by a portable accelerometer. Med Sci Sports Exerc 15:403–407CrossRefPubMedPubMedCentralGoogle Scholar
  26. Moores JE, Lemmon MT, Rafkin SC, Francis R, Pla-Garcia J, de la Torre Juárez M, Bean K, Kass D, Haberle R, Newman C (2015) Atmospheric movies acquired at the Mars science laboratory landing site: cloud morphology, frequency and significance to the gale crater water cycle and phoenix mission results. Adv Space Res 55:2217–2238CrossRefGoogle Scholar
  27. Nasir A, Strauch S, Becker I, Sperling A, Schuster M, Richter P, Weißkopf M, Ntefidou M, Daiker V, An Y (2014) The influence of microgravity on Euglena gracilis as studied on Shenzhou 8. Plant Biol 16:113–119CrossRefPubMedGoogle Scholar
  28. Porst M, Lebert M, Häder D-P (1996) Long-term culture of Euglena gracilis: an Aquarack progress report. In: Proceedings of the 11th C.E.B.A.S. Workshops. Ruhr-University, Bochum, pp 217–223Google Scholar
  29. Porst M, Lebert M, Häder D-P (1997) Long-term cultivation of the flagellate Euglena gracilis. Microgravity Sci Technol 10:166–169PubMedGoogle Scholar
  30. Sakano Y, Pickering KD, Strom PF, Kerkhof LJ (2002) Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support. Appl Environ Microbiol 68:2285–2293CrossRefPubMedPubMedCentralGoogle Scholar
  31. Satyapal S, Filburn T, Trela J, Strange J (2001) Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuel 15:250–255CrossRefGoogle Scholar
  32. Strauch S, Schuster M, Lebert M, Richter P, Schmittnagel M, Hader D-P (2008) A closed ecological system in a space experiment. Life in space for life on earth. ESA, AngersGoogle Scholar
  33. Tranquille N, Emeis J, De Chambure D, Binot R, Tamponnet C (1994) Spirulina acceptability trials in rats. A study for the “Melissa” life-support system. Adv Space Res 14:167–170CrossRefPubMedGoogle Scholar
  34. Tri TO, Brown MF, Ewert MK, Foerg SL, McKinley MK (1991) Regenerative life support systems (RLSS) test bed development at NASA-Johnson Space Center, SAE technical paperGoogle Scholar
  35. Wang G, Chen H, Li G, Chen L, Li D, Hu C, Chen K, Liu Y (2006) Population growth and physiological characteristics of microalgae in a miniaturized bioreactor during space flight. Acta Astronaut 58:264–269CrossRefGoogle Scholar
  36. Wheeler RM, Sager JC (2006) Crop production for advanced life support systems. Technical Reports: 1Google Scholar
  37. Yang VC, Bartlett RH, Palsson BO, Javanmardian M (1997) Photobioreactors and closed ecological life support systems and artificial lungs containing the same, Google PatentsGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Donat-Peter Häder
    • 1
  • Markus Braun
    • 2
  • Ruth Hemmersbach
    • 3
  1. 1.Emeritus from Friedrich-Alexander UniversityErlangen-NürnbergGermany
  2. 2.Space Administration, German Aerospace Center (DLR)BonnGermany
  3. 3.Institute of Aerospace Medicine, Gravitational Biology, German Aerospace Center (DLR)CologneGermany

Personalised recommendations