Advertisement

Gravity Sensing, Graviorientation and Microgravity

  • Donat-Peter Häder
  • Markus Braun
  • Ruth Hemmersbach
Chapter
Part of the SpringerBriefs in Space Life Sciences book series (BRIEFSSLS)

Abstract

Gravity has constantly governed the evolution of life on Earth over the last 3.5 billion years while the magnetic field of the Earth has fluctuated over the eons, temperatures constantly change, and the light intensity undergoes seasonal and daily cycles. All forms of life are permanently exposed to gravity and it can be assumed that almost all organisms have developed sensors and respond in one way or the other to the unidirectional acceleration force. Here we summarize what is currently known about gravity sensing and response mechanisms in microorganisms, lower and higher plants starting from the historical eye-opening experiments from the nineteenth century up to today’s extremely rapidly advancing cellular, molecular and biotechnological research. In addition to high-tech methods, in particular experimentation in the microgravity environment of parabolic flights and in the low Earth orbit as well as in “microgravity simulators” have considerably improved our knowledge of the fascinating sensing and response mechanisms which enable organisms to explore and exploit the environment on, above and below the surface of the Earth and which was fundamental for evolution of life on Earth.

Keywords

Gravitaxis Gravitropism Gravireceptor Statolith Microgravity platforms 

References

  1. Baldwin IT (2010) Plant volatiles. Curr Biol 20:R392–R397CrossRefPubMedGoogle Scholar
  2. Bean B (1984) Microbial geotaxis. In: Colombetti G, Lenci F (eds) Membranes and sensory transduction. Plenum Press, London, pp 163–198CrossRefGoogle Scholar
  3. Bechert J (2009) Vergleichende Untersuchungen zur Gravitaxis und Phototaxis bei Ciliaten. PhD, BonnGoogle Scholar
  4. Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133:1677–1690CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bodanis D (2005) E=mc2: a biography of the world’s most famous equation. Bloomsbury Publishing, LondonGoogle Scholar
  6. Briggs WR (2014) Phototropism: some history, some puzzles, and a look ahead. Plant Physiol 164:13–23CrossRefPubMedPubMedCentralGoogle Scholar
  7. Buder J (1920) Neue phototropische Fundamentalversuche. Berichte der Deutschen Botanischen Gesellschaft 38:10–19Google Scholar
  8. Bünning E (1955) Bewegungen. Fortschritte der Botanik 18:347–364Google Scholar
  9. Buttinoni I, Volpe G, Kümmel F, Volpe G, Bechinger C (2012) Active Brownian motion tunable by light. J Phys Condens Matter 24:284129CrossRefPubMedGoogle Scholar
  10. Clegg MR, Maberly SC, Jones RI (2003) Chemosensory behavioural response of freshwater phytoplanktonic flagellates. Plant Cell Environ 27:123–135CrossRefGoogle Scholar
  11. Dusenbery DB (1985) Using a microcomputer and videocamera to simultaneously track 25 animals. Comput Biol Med 15:169–175CrossRefPubMedGoogle Scholar
  12. Eapen D, Barroso ML, Ponce G, Campos ME, Cassab GI (2005) Hydrotropism: root growth responses to water. Trends Plant Sci 10:44–50CrossRefPubMedGoogle Scholar
  13. Edelmann HG, Gudi G, Kühnemann F (2002) The gravitropic setpoint angle of dark-grown rye seedlings and the role of ethylene. J Exp Bot 53:1627–2634CrossRefPubMedGoogle Scholar
  14. Everett M, Thimann KV (1968) Second positive phototropism in the Avena coleoptile. Plant Physiol 43:1786–1792CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fenchel T, Finlay BJ (1984) Geotaxis in the ciliated protozoon Loxodes. J Exp Biol 110:17–33Google Scholar
  16. Fiedler B, Börner T, Wilde A (2005) Phototaxis in the cyanobacterium Synechocystis sp. PCC 6803: role of different photoreceptors. Photochem Photobiol 81:1481–1488CrossRefPubMedGoogle Scholar
  17. Finlay BJ, Fenchel T (1986) Photosensivity in the ciliated protozoon Loxodes: pigment granules, absorption and action spectra, blue light perception, and ecological significance. J Protozool 33:534–542CrossRefGoogle Scholar
  18. Finlay B, Fenchel T, Gardener S (1986) Oxygen perception and O2 toxicity in the freshwater ciliated protozoon Loxodes. J Eukaryot Microbiol 33:157–165Google Scholar
  19. Fontana DR, Poff KL (1984) Effect of stimulus strength and adaptation on the thermotactic response of Dictyostelium discoideum pseudoplasmodia. Exp Cell Res 150:250–257CrossRefPubMedGoogle Scholar
  20. Fraenkel GS, Gunn DL (1961) The orientation of animals (Kineses, taxes and compass reactions). Dover Publication Inc., New YorkGoogle Scholar
  21. Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809CrossRefPubMedGoogle Scholar
  22. Häder D-P (1991) Strategy of orientation in flagellates. In: Riklis E (ed) Photobiology. The science and its applications. Plenum Press, New York, pp 497–510Google Scholar
  23. Häder D-P, Hemmersbach R (1997) Graviperception and graviorientation in flagellates. Planta 203:7–10CrossRefGoogle Scholar
  24. Häder D-P, Hemmersbach R (2017) Gravitaxis in Euglena. In: Schwartzbach S, Shigeoka S (eds) Euglena: biochemistry, cell and molecular biology. Springer, Cham, pp 237–266CrossRefGoogle Scholar
  25. Häder D-P, Iseki M (2017) Photomovement in Euglena. In: Schwartzbach S, Shigeoka S (eds) Euglena: biochemistry, cell and molecular biology. Springer, Cham, pp 207–235CrossRefGoogle Scholar
  26. Häder D-P, Rosum A, Schäfer J, Hemmersbach R (1995) Gravitaxis in the flagellate Euglena gracilis is controlled by an active gravireceptor. J Plant Physiol 146:474–480CrossRefPubMedGoogle Scholar
  27. Häder D-P, Hemmersbach R, Lebert M (2005) Gravity and the behavior of unicellular organisms. Cambridge Univ. Press, CambridgeCrossRefGoogle Scholar
  28. Häder D-P, Braun M, Grimm D, Hemmersbach R (2017) Gravireceptors in eukaryotes – a comparison of case studies on the cellular level. npj Microgravity 3:13CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hamant O (2013) Widespread mechanosensing controls the structure behind the architecture in plants. Curr Opin Plant Biol 16:654–660CrossRefPubMedGoogle Scholar
  30. Hawking SW (2006) The theory of everything: the origin and fate of the Universe. Phoenix Books, Special AnnivGoogle Scholar
  31. Hemmersbach R, Häder D-P (1999) Graviresponses of certain ciliates and flagellates. FASEB J 13:S69–S75CrossRefPubMedGoogle Scholar
  32. Hemmersbach R, Voormanns R, Briegleb W, Rieder N, Häder D-P (1996) Influence of accelerations on the spatial orientation of Loxodes and Paramecium. J Biotechnol 47:271–278CrossRefPubMedGoogle Scholar
  33. Hemmersbach-Krause R, Häder D-P (1990) Negative gravitaxis (geotaxis) of Paramecium – demonstrated by image analysis. Appl Micrograv Technol 4:221–223Google Scholar
  34. Hemmersbach-Krause R, Briegleb W, Häder D-P (1991a) Dependence of gravitaxis in Paramecium on oxygen. Eur J Protistol 27:278–282CrossRefPubMedGoogle Scholar
  35. Hemmersbach-Krause R, Briegleb W, Häder D-P, Plattner H (1991b) Gravity effects on Paramecium cells: an analysis of a possible sensory function of trichocysts and of simulated weightlessness of trichocyst exocytosis. Eur J Protistol 27:85–92CrossRefPubMedGoogle Scholar
  36. Isnard S, Silk WK (2009) Moving with climbing plants from Charles Darwin’s time into the 21st century. Am J Bot 96:1205–1221CrossRefPubMedGoogle Scholar
  37. Kamykowski D, Zentara SJ (1977) The diurnal vertical migration of motile phytoplankton through temperature gradients. Limnol Oceanogr 22:148–151CrossRefGoogle Scholar
  38. Kang BG (1979) Epinasty. In: Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of Plant Physiology. N.S. Springer-Verlag, Berlin, pp 647–667Google Scholar
  39. Kim D (2013) Control of Tetrahymena pyriformis as a microrobot. PhD thesis, Drexel UniversityGoogle Scholar
  40. Kiss JZ, Mullen JL, Correll MJ, Hangarter RP (2003) Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiol 131:1411–1417CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kohn F, Hauslage J, Hanke W (2017) Membrane fluidity changes, a basic mechanism of interaction of gravity with cells? Microgravity Sci Technol 29:337–342CrossRefGoogle Scholar
  42. Konings H (1995) Gravitropism of roots: an evaluation of progress during the last three decades. Acta Botanica Neerlandica 44:195–223CrossRefGoogle Scholar
  43. Kushner DJ (1985) The Halobacteriaceae. In: Woese CR, Wolfe RS (eds) Archaebacteria bacteria: a treatise on structure and function. Acad. Press, Orlando, pp 171–214CrossRefGoogle Scholar
  44. Leakey RRB (1990) Nauclea diderrichii: rooting of stem cuttings, clonal variation in shoot dominance, and branch plagiotropism. Trees-Struct Funct 4:164–169CrossRefGoogle Scholar
  45. Li G, Tam L-K, Tang JX (2008) Amplified effect of Brownian motion in bacterial near-surface swimming. Proc Natl Acad Sci 105:18355–18359CrossRefPubMedGoogle Scholar
  46. Limbach C, Hauslage J, Schäfer C, Braun M (2005) How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights. Plant Physiol 139:1030–1040CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lin W, Paterson GA, Zhu Q, Wang Y, Kopylova E, Li Y, Knight R, Bazylinski DA, Zhu R, Kirschvink JL (2017) Origin of microbial biomineralization and magnetotaxis during the Archean. Proc Natl Acad Sci:201614654Google Scholar
  48. Liscum E, Askinosie SK, Leuchtman DL, Morrow J, Willenburg KT, Coats DR (2014) Phototropism: growing towards an understanding of plant movement. Plant Cell 26:38–55CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lohmann KJ, Lohmann CMF, Ehrhart LM, Bagley DA, Swing T (2004) Geomagnetic map used in sea-turtle navigation. These migratory animals have their own equivalent of a global positioning system. Nature 428:909–910CrossRefPubMedGoogle Scholar
  50. Lüttge U, Kluge M, Bauer G (1994) Botanik. VCH, WeinheimGoogle Scholar
  51. Machemer H (1996) A theory of gravikinesis in Paramecium. Adv Space Res 17:11–20CrossRefPubMedGoogle Scholar
  52. Machemer H, Machemer-Röhnisch S, Bräucker R, Takahashi K (1991) Gravikinesis in Paramecium: theory and isolation of a physiological response to the natural gravity vector. J Comp Physiol A 168:1–12CrossRefGoogle Scholar
  53. Maree AFM, Panfilov AV, Hogeweg P (1999) Migration and thermotaxis of Dictyostelium discoideum slugs, a model study. J Theor Biol 199:297–309CrossRefGoogle Scholar
  54. Margenau H, Kestner N (1969) Theory of intermolecular forces. Pergamon Press, OxfordGoogle Scholar
  55. Nultsch W (1975) Phototaxis and photokinesis. In: Carlile MJ (ed) Primitive sensory and communication systems. Academic Press, New York, pp 29–90Google Scholar
  56. Ooya M, Mogami Y, Izumi-Kurotani A, Baba SA (1992) Gravity-induced changes in propulsion of Paramecium caudatum: a possible role of gravireception in protozoan behaviour. J Exp Biol 163:153–167Google Scholar
  57. Pfeffer W (1881) Pflanzenphysiologie. Verlag Wilhelm Engelmann, LeipzigGoogle Scholar
  58. Poff KL, Skokut M (1977) Thermotaxis by pseudoplasmodia of Dictyostelium discoideum. Proc Natl Acad Sci USA 74:2007–2010CrossRefPubMedGoogle Scholar
  59. Porterfield DM (1997) Orientation of motile unicellular algae to oxygen: oxytaxis in Euglena. Biol Bull 193:229–230CrossRefPubMedGoogle Scholar
  60. Ruppel NJ, Hangarter RP, Kiss JZ (2001) Red-light-induced positive phototropism in Arabidopsis roots. Planta 212:424–430CrossRefPubMedGoogle Scholar
  61. Sato A, Sasaki S, Matsuzaki J, Yamamoto KT (2015) Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2. Plant Signal Behav 10:e990838CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sievers A, Buchen B, Hodick D (1996) Gravity sensing in tip-growing cells. Trends Plant Sci 1:273–279CrossRefPubMedGoogle Scholar
  63. Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ (2004) Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl Environ Microbiol 70:6230–6239CrossRefPubMedPubMedCentralGoogle Scholar
  64. Steidinger KA, Tangen K (1996) Dinoflagellates. In: Tomas CR, Hasle GR, Syvertsen EE (eds) Identifying Marine Diatoms and Dinoflagellates. Academic Press Inc., London, pp 387–585CrossRefGoogle Scholar
  65. Streeter J (2016) God and the history of the Universe. Wipf and Stock Publishers, EugeneGoogle Scholar
  66. Strohm AK, Baldwin KL, Masson PH (2012) Molecular mechanisms of root gravity sensing and signal transduction. Wiley Interdiscip Rev Dev Biol 1:276–285CrossRefPubMedGoogle Scholar
  67. Todd P (2007) Gravity-dependent phenomena at the scale of the single cell. Gravit Space Res 2:95–113 Google Scholar
  68. Votta JJ, Jahn TL (1972) Galvanotaxis of Chilomonas paramecium and Trachelomonas volvocina. J Protozool 19(Suppl):43Google Scholar
  69. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037CrossRefPubMedGoogle Scholar
  70. Whitaker BD, Poff KL (1980) Thermal adaptation of thermosensing and negative thermotaxis in Dictyostelium. Exp Cell Res 128:87–93CrossRefPubMedGoogle Scholar
  71. Yamamoto H, Yoshida M, Okuyama T (2002) Growth stress controls negative gravitropism in woody plant stems. Planta 216:280–292CrossRefPubMedGoogle Scholar
  72. Zhenan M, Shouyu R (1983) The effect of red light on photokinesis of Euglena gracilis. In: Tseng CK (ed) Proceedings of the Joint China-U.S. Phycology Symposium. Sci. Press, Beijing, pp 311–321Google Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Donat-Peter Häder
    • 1
  • Markus Braun
    • 2
  • Ruth Hemmersbach
    • 3
  1. 1.Emeritus from Friedrich-Alexander UniversityErlangen NürnbergGermany
  2. 2.Space Administration, German Aerospace Center (DLR)BonnGermany
  3. 3.Institute of Aerospace Medicine, Gravitational Biology, German Aerospace Center (DLR)CologneGermany

Personalised recommendations