Advertisement

INTERNODES for Heterogeneous Couplings

  • Paola GervasioEmail author
  • Alfio QuarteroniEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)

Abstract

The INTERNODES (INTERpolation for NOnconforming DEcompositionS) method is an interpolation based approach to solve partial differential equations on non-conforming discretizations. In this paper we apply the INTERNODES method to different problems such as the Fluid Structure Interaction problem and the Stokes-Darcy coupled problem that models the filtration of fluids in porous media. Our results highlight the flexibility of the method as well as its optimal rate of convergence.

References

  1. 1.
    C. Bernardi, Y. Maday, A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. XI (Paris, 1989–1991). Pitman Research Notes in Mathematics Series, vol. 299 (Longman Scientific & Technical, Harlow, 1994), pp. 13–51Google Scholar
  2. 2.
    H.J. Brauchli, J.T. Oden, Conjugate approximation functions in finite-element analysis. Q. Appl. Math. 29, 65–90 (1971)MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Deparis, D. Forti, A. Quarteroni, A rescaled localized radial basis function interpolation on non-Cartesian and nonconforming grids. SIAM J. Sci. Comput. 36(6), A2745–A2762 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Deparis, D. Forti, A. Quarteroni, A Fluid-Structure Interaction Algorithm Using Radial Basis Function Interpolation Between Non-conforming Interfaces. Modeling and Simulation in Science, Engineering and Technology (Springer, Berlin, 2016), pp. 439–450Google Scholar
  5. 5.
    S. Deparis, D. Forti, P. Gervasio, A. Quarteroni, INTERNODES: an accurate interpolation-based method for coupling the Galerkin solutions of PDEs on subdomains featuring non-conforming interfaces. Comput. Fluids 141, 22–41 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Discacciati, A. Quarteroni, Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22(2), 315–426 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Discacciati, P. Gervasio, A. Giacomini, A. Quarteroni, Interface Control Domain Decomposition (ICDD) Method for Stokes-Darcy coupling. SIAM J. Numer. Anal. 54(2), 1039–1068 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    D. Forti, Parallel algorithms for the solution of large-scale fluid-structure interaction problems in hemodynamics. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne (April 2016)Google Scholar
  9. 9.
    P. Gervasio, A. Quarteroni, Analysis of the INTERNODES method for non-conforming discretizations of elliptic equations. Comput. Methods Appl. Mech. Eng. 334, 138–166 (2018). https://doi.org/10.1016/j.cma.2018.02.004 MathSciNetCrossRefGoogle Scholar
  10. 10.
    V. Gupta, C.A. Duarte, I. Babuška, U. Banerjee, Stable GFEM (SGFEM): improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics. Comput. Methods Appl. Mech. Eng. 289, 355–386 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    W.J. Layton, F. Schieweck, I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    T. Levy, E. Sánchez-Palencia, On boundary conditions for fluid flow in porous media. Int. J. Eng. Sci. 13(11), 923–940 (1975)MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Quarteroni, Numerical Models for Differential Problems, 2nd edn. (Springer, Berlin, 2014)zbMATHGoogle Scholar
  14. 14.
    A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations (Springer, Heidelberg, 1994)zbMATHGoogle Scholar
  15. 15.
    A. Quarteroni, A. Manzoni, C. Vergara. The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications. Acta Numer. 26, 365–590 (2017). https://doi.org/10.1017/S0962492917000046 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DICATAMUniversità degli Studi di BresciaBresciaItaly
  2. 2.MOX, Department of MathematicsPolitecnico di MilanoMilanoItaly
  3. 3.Institute of Mathematics, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations