Advertisement

Additive Schwarz with Vertex Based Adaptive Coarse Space for Multiscale Problems in 3D

  • Leszek MarcinkowskiEmail author
  • Talal RahmanEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)

Abstract

In this paper an overlapping additive Schwarz method with a spectrally enriched coarse space is proposed. The method is for solving the standard Finite Element discretization of second order elliptic problems in there dimensions with discontinuous coefficients, where the discontinuities are inside subdomains and across subdomain boundaries. In case when the coarse space is large enough the convergence of the PCG method is independent of jumps in the coefficient.

Notes

Acknowledgment

The work of “L. Marcinkowski” was partially supported by Polish Scientific Grant 2016/21/B/ST1/00350.

References

  1. 1.
    S.C. Brenner, L.Y. Sung, Balancing domain decomposition for nonconforming plate elements. Numer. Math. 83(1), 25–52 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    J.G. Calvo, O.B. Widlund, An adaptive choice of primal constraints for BDDC domain decomposition algorithms. Electron. Trans. Numer. Anal. 45, 524–544 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    T. Chartier, R.D. Falgout, V.E. Henson, J. Jones, T. Manteuffel, S. McCormick, J. Ruge, P.S. Vassilevski, Spectral AMGe (ρAMGe). SIAM J. Sci. Comput. 25(1), 1–26 (2003). https://doi.org/10.1137/S106482750139892X MathSciNetCrossRefGoogle Scholar
  4. 4.
    V. Dolean, F. Nataf, R. Scheichl, N. Spillane, Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math. 12, 391–414 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Y. Efendiev, J. Galvis, R. Lazarov, J. Willems, Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer. Anal. 46, 1175–1199 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov, J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Comput. Methods Appl. Math. 12(4), 415–436 (2012).  https://doi.org/10.2478/cmam-2012-0031 MathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Galvis, Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8(4), 1461–1483 (2010). https://doi.org/10.1137/090751190 MathSciNetCrossRefGoogle Scholar
  8. 8.
    H.H. Kim, E.T. Chung, A BDDC algorithm with enriched coarse spaces for two-dimensional elliptic problems with oscillatory and high contrast coefficients. Multiscale Model. Simul. 13(2), 571–593 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    H.H. Kim, E. Chung, J. Wang, BDDC and FETI-DP preconditioners with adaptive coarse spaces for three-dimensional elliptic problems with oscillatory and high contrast coefficients. J. Comput. Phys. 349, 191–214 (2017). https://doi.org/10.1016/j.jcp.2017.08.003 MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Klawonn, P. Radtke, O. Rheinbach, FETI-DP methods with an adaptive coarse space. SIAM J. Numer. Anal. 53(1), 297–320 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Klawonn, M. Kuhn, O. Rheinbach, Adaptive coarse spaces for FETI-DP in three dimensions. SIAM J. Sci. Comput. 38(5), A2880–A2911 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Klawonn, P. Radtke, O. Rheinbach, A comparison of adaptive coarse spaces for iterative substructuring in two dimensions. Electron. Trans. Numer. Anal. 45:75–106 (2016)MathSciNetzbMATHGoogle Scholar
  13. 13.
    J. Mandel, B. Sousedík, Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech. Eng. 196(8), 1389–1399 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    F. Nataf, H. Xiang, V. Dolean, A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps. C.R. Math. 348(21–22), 1163–1167 (2010)Google Scholar
  15. 15.
    F. Nataf, H. Xiang, V. Dolean, N. Spillane, A coarse space construction based on local Dirichlet-to-Neumann maps. SIAM J. Sci. Comput. 33(4), 1623–1642 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    B.F. Smith, P.E. Bjørstad, W.D. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (Cambridge University Press, Cambridge, 1996)zbMATHGoogle Scholar
  17. 17.
    N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126, 741–770 (2014). https://doi.org/10.1007/s00211-013-0576-y MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Toselli, O. Widlund, Domain Decomposition Methods—Algorithms and Theory. Springer Series in Computational Mathematics, vol. 34 (Springer, Berlin, 2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of WarsawWarszawaPoland
  2. 2.Faculty of Engineering and ScienceWestern Norway University of Applied SciencesBergenNorway

Personalised recommendations