On the Accuracy of the Inner Newton Iteration in Nonlinear Domain Decomposition

  • Axel KlawonnEmail author
  • Martin LanserEmail author
  • Oliver RheinbachEmail author
  • Matthias UranEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)


We introduce an energy minimizing nonlinear preconditioner for our nonlinear FETI-DP methods, and we will show numerical results for some problems in two dimensions based on the scaled p-Laplace operator. The equivalence of nonlinear FETI-DP methods and specific right-preconditioned Newton-Krylov methods was already shown. In nonlinear FETI-DP methods, the preconditioner describes a nonlinear elimination process. In the variants proposed here, the evolution of a problem dependent global energy is controlled during the elimination process, which guarantees that the application of the nonlinear preconditioner does not increase the global energy. Often, stopping the inner Newton iteration early, based on the energy criterion, gives better performance of the overall method. In this paper, a comparison of the classical nonlinear FETI-DP methods with nonlinear FETI-DP methods using an energy minimizing nonlinear preconditioner is provided.



This work was supported in part by the German Research Foundation (DFG) through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA) under grants KL 2094/4-1, KL 2094/4-2, RH 122/2-1, and RH 122/3-2.


  1. 1.
    P.R. Brune, M.G. Knepley, B.F. Smith, X. Tu, Composing scalable nonlinear algebraic solvers. SIAM Rev. 57, 535–565 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    S.C. Eisenstat, S.F. Walker, Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Klawonn, M. Lanser, O. Rheinbach, Nonlinear FETI-DP and BDDC methods. SIAM J. Sci. Comput. 36, A737–A765 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Klawonn, M. Lanser, P. Radtke, O. Rheinbach, On an adaptive coarse space and on nonlinear domain decomposition, in Domain Decomposition Methods in Science and Engineering XXI, ed. by J. Erhel, M.J. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund. Lecture Notes in Computational Science and Engineering, vol. 98 (Springer International Publishing, Berlin, 2014), pp. 71–83Google Scholar
  5. 5.
    A. Klawonn, M. Lanser, O. Rheinbach, M. Uran, New nonlinear FETI-DP methods based on partial nonlinear elimination of variables, in Proceedings of the 23rd International Conference on Domain Decomposition. Lecture Notes in Computer Science Engineering, vol. 116 (Springer, Berlin, 2017), pp. 207–215Google Scholar
  6. 6.
    A. Klawonn, M. Lanser, O. Rheinbach, M. Uran, Nonlinear FETI-DP and BDDC methods: a unified framework and parallel results. SIAM J. Sci. Comput. 39, C417–C451 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    P.J. Lanzkorn, D.J. Rose, J.T. Wilkes, An analysis of approximate nonlinear elimination. SIAM J. Sci. Comput. 17, 538–559 (1996)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Nocedal, S.J. Wright, Numerical Optimization, 2nd edn. (Springer, Berlin, 2006)zbMATHGoogle Scholar
  9. 9.
    M. Ulbrich, S. Ulbrich, Nichtlineare Optimierung (Springer, Basel, 2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Institut für Numerische Mathematik und Optimierung, Fakultät für Mathematik und InformatikTechnische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations