Advertisement

On Overlapping Domain Decomposition Methods for High-Contrast Multiscale Problems

  • Juan Galvis
  • Eric T. Chung
  • Yalchin Efendiev
  • Wing Tat Leung
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)

Abstract

We review some important ideas in the design and analysis of robust overlapping domain decomposition algorithms for high-contrast multiscale problems.

References

  1. 1.
    J.E. Aarnes, T. Hou, Multiscale domain decomposition methods for elliptic problems with high aspect ratios. Acta Math. Appl. Sin. Engl. Ser. 18, 63–76 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    V.M. Calo, Y. Efendiev, J. Galvis, G. Li, Randomized oversampling for generalized multiscale finite element methods. Multiscale Model. Simul. 14(1), 482–501 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    E.T. Chung, Y. Efendiev, W.T. Leung, Constraint energy minimizing generalized multiscale finite element method (2017). Arxiv preprint arXiv:1704.03193Google Scholar
  4. 4.
    M. Dryja, M. Sarkis, O. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72(3), 313–348 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Y. Efendiev, J. Galvis, P.S. Vassilevski, Multiscale spectral AMGe solvers for high-contrast flow problems. Preprint available at http://isc.tamu.edu/resources/preprints/2012/2012--02.pdf
  6. 6.
    Y. Efendiev, J. Galvis, P.S. Vassilevski, Spectral element agglomerate algebraic multigrid methods for elliptic problems with high-contrast coefficients, in Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol. 78 (Springer, Heidelberg, 2011), pp. 407–414Google Scholar
  7. 7.
    Y. Efendiev, J. Galvis, T. Hou, Generalized multiscale finite element methods. J. Comput. Phys. 251, 116–135 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Galvis, Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media. SIAM J. Multiscale Model. Simul. 8, 1461–1483 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Galvis, Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media. Reduced dimensional coarse spaces. SIAM J. Multiscale Model. Simul. 8, 1621–1644 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    I.G. Graham, P.O. Lechner, R. Scheichl, Domain decomposition for multiscale PDEs. Numer. Math. 106(4), 589–626 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    C. Pechstein, C.R. Dohrmann, A unified framework for adaptive BDDC. Electron. Trans. Numer. Anal. 46, 273–336 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    M. Sarkis, Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and applications to elasticity, in Domain Decomposition Methods in Science and Engineering (National Autonomous University of Mexico, México, 2003), pp. 149–158Google Scholar
  13. 13.
    A. Toselli, O. Widlund, Domain Decomposition Methods – Algorithms and Theory. Computational Mathematics, vol. 34 (Springer, Berlin, 2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Juan Galvis
    • 1
  • Eric T. Chung
    • 2
  • Yalchin Efendiev
    • 3
  • Wing Tat Leung
    • 3
  1. 1.Departamento de MatemáticasUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Department of MathematicsThe Chinese University of Hong KongShatinHong Kong SAR
  3. 3.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations