Advertisement

Improving the Parallel Performance of Overlapping Schwarz Methods by Using a Smaller Energy Minimizing Coarse Space

  • Alexander HeinleinEmail author
  • Axel KlawonnEmail author
  • Oliver RheinbachEmail author
  • Olof B. Widlund
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)

Abstract

We consider a recent overlapping Schwarz method with an energy-minimizing coarse space of reduced size. In numerical experiments for up to 64,000 cores, we show that the parallel efficiency and the total time to solution is improved significantly, compared to our previous overlapping Schwarz method using an alternative energy-minimizing coarse space.

Notes

Acknowledgements

This work was supported in part by the German Research Foundation (DFG) through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA) under grants KL 2094/4-2 and RH 122/3-2. The work of the fourth author was supported by the National Science Foundation Grant DMS-1522736.

The authors gratefully acknowledge the computing time granted by the Center for Computational Sciences and Simulation (CCSS) at Universität Duisburg-Essen and provided on the supercomputer magnitUDE (DFG grants INST 20876/209-1 FUGG, INST 20876/243-1 FUGG) at Zentrum für Informations- und Mediendienste (ZIM).

The authors also gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for providing computing time on the GCS Supercomputer JUQUEEN BG/Q supercomputer [15] at JSC Jülich. GCS is the alliance of the three national supercomputing centres HLRS (Universität Stuttgart), JSC (Forschungszentrum Jülich), and LRZ (Bayerische Akademie der Wissenschaften), funded by the German Federal Ministry of Education and Research (BMBF) and the German State Ministries for Research of Baden-Württemberg (MWK), Bayern (StMWFK) and Nordrhein-Westfalen (MIWF).

References

  1. 1.
    P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    J.G. Calvo, A two-level overlapping Schwarz method for H(curl) in two dimensions with irregular subdomains. Electron. Trans. Numer. Anal. 44, 497–521 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    C.R. Dohrmann, O.B. Widlund, Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity. Int. J. Numer. Methods Eng. 82(2), 157–183 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    C.R. Dohrmann, O.B. Widlund, An alternative coarse space for irregular subdomains and an overlapping Schwarz algorithm for scalar elliptic problems in the plane. SIAM J. Numer. Anal. 50(5), 2522–2537 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    C.R. Dohrmann, O.B. Widlund, On the design of small coarse spaces for domain decomposition algorithms. SIAM J. Sci. Comput. 39(4), A1466–A1488 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    C.R. Dohrmann, A. Klawonn, O.B. Widlund, Domain decomposition for less regular subdomains: overlapping Schwarz in two dimensions. SIAM J. Numer. Anal. 46(4), 2153–2168 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    C.R. Dohrmann, A. Klawonn, O.B. Widlund, A family of energy minimizing coarse spaces for overlapping Schwarz preconditioners, in Domain Decomposition Methods in Science and Engineering XVII. Lecture Notes in Computer Science Engineering, vol. 60 (Springer, Berlin, 2008), pp. 247–254Google Scholar
  8. 8.
    M. Dryja, B.F. Smith, O.B. Widlund, Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions. SIAM J. Numer. Anal. 31(6), 1662–1694 (1994)MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Heinlein, Parallel overlapping Schwarz preconditioners and multiscale discretizations with applications to fluid-structure interaction and highly heterogeneous problems. PhD thesis, Universität zu Köln, Köln, 2016Google Scholar
  10. 10.
    A. Heinlein, A. Klawonn, O. Rheinbach, A parallel implementation of a two-level overlapping Schwarz method with energy-minimizing coarse space based on Trilinos. SIAM J. Sci. Comput. 38(6), C713–C747 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Heinlein, A. Klawonn, O. Rheinbach, Parallel two-level overlapping Schwarz methods in fluid-structure interaction, in Numerical Mathematics and Advanced Applications ENUMATH 2015, ed. by B. Karasözen, M. Manguoğlu, M. Tezer-Sezgin, S. Göktepe, Ö. Uğur (Springer International Publishing, Cham, 2016), pp. 521–530. Also Preprint 2015-15 at http://tu-freiberg.de/fakult1/forschung/preprints
  12. 12.
    A. Heinlein, A. Klawonn, O. Rheinbach, Parallel overlapping Schwarz with an energy-minimizing coarse space, in Domain Decomposition Methods in Science and Engineering XXIII, ed. by C.-O. Lee, X.-C. Cai, D.E. Keyes, H.H. Kim, A. Klawonn, E.-J. Park, O.B. Widlund. Lecture Notes in Computer Science Engineering, vol. 116 (Springer International Publishing, Cham, 2017), pp. 353–360Google Scholar
  13. 13.
    M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, R.B. Lehoucq, K.R. Long, R.P. Pawlowski, E.T. Phipps, A.G. Salinger, H.K. Thornquist, R.S. Tuminaro, J.M. Willenbring, A. Williams, K.S. Stanley, An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    T.Y. Hou, X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Stephan, J. Docter, JUQUEEN: IBM Blue Gene/Q Supercomputer System at the Jülich Supercomputing Centre. J. Large-Scale Res. Facil. 1, A1 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Toselli, O. Widlund, Domain Decomposition Methods—Algorithms and Theory, vol. 34 Springer Series in Computational Mathematics (Springer, Berlin, 2005)Google Scholar
  17. 17.
    J. Van lent, R. Scheichl, I.G. Graham, Energy-minimizing coarse spaces for two-level Schwarz methods for multiscale PDEs. Numer. Linear Algebra Appl. 16(10), 775–799 (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Institut für Numerische Mathematik und Optimierung, Fakultät für Mathematik und InformatikTechnische Universität Bergakademie FreibergFreibergGermany
  3. 3.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations