Advertisement

A Nonlinear ParaExp Algorithm

  • Martin J. Gander
  • Stefan Güttel
  • Madalina Petcu
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)

Abstract

We derive and analyze a nonlinear variant of the ParaExp algorithm introduced in Gander and Güttel (SIAM J Sci Comput 35(2):C123–C142, 2013) for linear evolution problems. We show that the nonlinear ParaExp algorithm converges in a finite number of steps, and that it can be interpreted as a parareal algorithm where the coarse integrator solves the linear part of the evolution problem. We also provide a numerical example illustrating the efficiency of the new algorithm.

References

  1. 1.
    M.J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time Domain Decomposition Methods (Springer, Berlin, 2015), pp. 69–113zbMATHGoogle Scholar
  2. 2.
    M.J. Gander, S. Güttel, PARAEXP: a parallel integrator for linear initial-value problems. SIAM J. Sci. Comput. 35(2), C123–C142 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    M.J. Gander, E. Hairer, Nonlinear convergence analysis for the parareal algorithm, in Domain Decomposition Methods in Science and Engineering XVII (Springer, Berlin, 2007), pp. 45–56Google Scholar
  4. 4.
    M.J. Gander, L. Halpern, Absorbing boundary conditions for the wave equation and parallel computing. Math. Comput. 74, 153–176 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M.J. Gander, M. Petcu, Analysis of a Krylov subspace enhanced parareal algorithm. ESAIM Proc. 25, 45–56 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M.J. Gander, S. Vanderwalle, Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    M.J. Gander, L. Halpern, F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal. 41, 1643–1681 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Gopalakrishnan, J. Schöberl, C. Wintersteiger, Mapped tent pitching schemes for hyperbolic systems. SIAM J. Sci. Comput. 39(6), B1043–B1063 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Güttel, A parallel overlapping time-domain decomposition method for ODEs, in Domain Decomposition Methods in Science and Engineering XX (Springer, Berlin, 2013), pp. 483–490Google Scholar
  10. 10.
    G. Kooij, M. Botchev, B. Geurts, A block Krylov subspace implementation of the time-parallel ParaExp method and its extension for nonlinear partial differential equations. J. Comput. Appl. Math. 316, 229–246 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.-L. Lions, Y. Maday, G. Turinici, A “parareal” in time discretization of PDE’s. C. R. Acad. Sci. Paris Sér. I Math. 332, 661–668 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de GenèveGenèveSwitzerland
  2. 2.School of MathematicsThe University of ManchesterManchesterUK
  3. 3.Laboratoire de MathématiquesUniversité de PoitiersPoitiersFrance
  4. 4.The Institute of Statistics and Applied Mathematics of the Romanian AcademyBucharestRomania
  5. 5.The Institute of Mathematics of the Romanian AcademyBucharestRomania

Personalised recommendations