Architecture of an Object-Oriented Modeling Framework for Human Occupation

  • Manuel-Ignacio BalagueraEmail author
  • María-Cristina Vargas
  • Jenny-Paola Lis-Gutierrez
  • Amelec Viloria
  • Luz Elena Malagón
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10942)


The limitations of the actual theoretical structure of occupational science are discussed emphasizing on its implications when dealing with the stability and sustainability of social systems. By using a literature review focused on the time evolution and disciplinary distribution of the scientific production about human occupation, it is verified the insufficient production leading to the development of models that facilitate quantitative reasoning to support decision making. As an alternative, the architecture of an object-oriented framework is proposed. The framework is presented by using an UML (Unified Modeling Language) class diagram of a generic occupational system, including the class model of each system’s component: attributes and behaviors. Finally, guidelines are given for the use of the models produced with the framework in simulating diverse occupation systems scenarios.


Human occupation Occupational science Occupational system Complexity Complex system Modeling framework Object-oriented modeling 


  1. 1.
    Gallagher, M., Muldoon, O., Pettigrew, J.: An integrative review of social and occupational factors influencing health and wellbeing. Front. Psychol. 6, 1281 (2015)CrossRefGoogle Scholar
  2. 2.
    Rees, M.: Our Final Hour: A Scientist’s Warning: How Terror, Error, and Environmental Disaster Threaten Humankind’s Future in This Century — on Earth and Beyond. Basic Books, New York (2003)Google Scholar
  3. 3.
    Peñas-Felizzola, O., Gómez-Galindo, A., Parra-Esquivel, E.: The role of occupational therapy in contexts of armed conflict and the post-conflict. Rev. Salud Pública 17(4), 612–625 (2015)CrossRefGoogle Scholar
  4. 4.
    Fogelberg, D., Frauwirth, S.: A complexity science approach to occupation: moving beyond the individual. J. Occup. Sci. 17(3), 131–139 (2010)CrossRefGoogle Scholar
  5. 5.
    Amozurrutia, J.A.: Complejidad y Ciencias Sociales. Universidad Autónoma de México, México D.F. (2012)Google Scholar
  6. 6.
    Johansen, O.: Introducción a la Teoría General de Sistemas. Limusa, Mexico D.F. (2007)Google Scholar
  7. 7.
    Lewin, R.: Complexity, Life at the Edge of Chaos. University of Chicago Press, Chicago (2000)Google Scholar
  8. 8.
    Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, Santa Fe (2011)zbMATHGoogle Scholar
  9. 9.
    Booch, G., Maksimchuk, R., Engle, M., Young, B., Conallen, J., Houston, K.: Object-Oriented Analysis and Design with Applications. Addison Wesley, Boston (2007)Google Scholar
  10. 10.
    Nakai, Y., Koyama, Y., Terano, T. (eds.): Agent-Based Approaches in Economic and Social Complex Systems VIII. Springer, New York (2013). Scholar
  11. 11.
    López-Paredes, A.: Ingeniería de Sistemas Sociales. Universidad de Valladolid, Valladolid (2004)Google Scholar
  12. 12.
    Gasset, J.O.Y.: History as a System and Other Essays Toward a Philosophy of History. W. W. Norton & Company, New York (1962)Google Scholar
  13. 13.
    Carsetti, A.: Epistemic Complexity and Knowledge Construction. Springer, Dordrecht (2013). Scholar
  14. 14.
    Anderson, P.: Complexity Theory and Organization Science. Organ. Sci. 10, 216–232 (1999)CrossRefGoogle Scholar
  15. 15.
    Nemiche, M.: Advances in Complex Societal, Environmental and Engineered Systems. Springer, New York (2017)CrossRefGoogle Scholar
  16. 16.
    Parunak, H., Odell, J.: Representing social structures in UML. In: AOSE 2001, Montreal, Canada (2002)Google Scholar
  17. 17.
    Castellani, B., William, H.: Sociology and Complexity Science. Springer, Berlin (2009). Scholar
  18. 18.
    Forrester, J.W.: Counterintuitive behavior of social systems. Reason, 4–13 (1971)Google Scholar
  19. 19.
    Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach. Wiley-IEEE Press, Linköping (2014)CrossRefGoogle Scholar
  20. 20.
    Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual. Addison Wesley Longman Inc., Cambridge (1999)Google Scholar
  21. 21.
    Slanina, F.: Essentials of Econophysics Modelling. Oxford University Press, Oxford (2014)zbMATHGoogle Scholar
  22. 22.
    Viloria, A., Viviana Robayo, P.: Virtual network level of application composed IP networks connected with systems - (NETS Peer-to- Peer). Indian J. Sci. Technol. (2016). ISSN 0974-5645Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Manuel-Ignacio Balaguera
    • 1
    Email author
  • María-Cristina Vargas
    • 2
  • Jenny-Paola Lis-Gutierrez
    • 1
  • Amelec Viloria
    • 3
  • Luz Elena Malagón
    • 4
  1. 1.Fundación Universitaria Konrad LorenzBogotá D.CColombia
  2. 2.Escuela Colombiana de RehabilitaciónBogotá D.C.Colombia
  3. 3.Universidad de la CostaBarranquillaColombia
  4. 4.Corporación Universitaria del MetaVillavicencioColombia

Personalised recommendations