Advertisement

Using Discrete-Event-Simulation for Improving Operational Efficiency in Laboratories: A Case Study in Pharmaceutical Industry

  • Alexander Troncoso-Palacio
  • Dionicio Neira-Rodado
  • Miguel Ortíz-BarriosEmail author
  • Genett Jiménez-Delgado
  • Hugo Hernández-Palma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10942)

Abstract

Just-in-time delivery has become a key aspect of pharmaceutical industry when loyalizing customers and competing internationally. Additionally, prolonged lead times may lead to increased work-in-process inventory, penalties for non-compliance and cost overrun. The problem is more complex upon considering a wide variety of products as often noted in pharmaceutical companies. It is then relevant to design strategies focusing on improving the delivery performance. Therefore, this paper proposes the use of Discrete-event simulation (DES) to identify inefficiencies and define solutions for the delivery problem. First, input data were gathered and analyzed. Then, a DES model was developed and validated. Finally, potential improvement scenarios were simulated and analyzed regarding productivity rate and proportion of tardy jobs. A case study in a pharmaceutical laboratory is presented to validate the proposed methodology. The results evidenced that, by implementing the best scenario, the productivity may be augmented by 44.83% which would generate zero tardy jobs.

Keywords

Discrete-event simulation (DES) Pharmaceutical industry Productivity rate Proportion of tardy jobs 

Notes

Acknowledgments

The authors would like to thank the support of INCOBRA Laboratories, a company from the pharmaceutical sector, where this study was implemented. Additionally, we fully appreciate the collaboration of Eng. Giuseppe Polifroni Avendaño who provided good support during this process.

References

  1. 1.
    Hernández, R.S., Miranda, P.P.: Una mirada a la industria farmacéutica en Colombia. Rev. FACCEA 4(2), 107–115 (2014)Google Scholar
  2. 2.
    Laínez, J.M., Schaefer, E., Reklaitis, G.V.: Challenges and opportunities in enterprise-wide optimization in the pharmaceutical industry. Comput. Chem. Eng. 47, 19–28 (2012)CrossRefGoogle Scholar
  3. 3.
    Van Der Vorst, J.G., Tromp, S.O., Zee, D.J.V.D.: Simulation modelling for food supply chain redesign; integrated decision making on product quality, sustainability and logistics. Int. J. Prod. Res. 47(23), 6611–6631 (2009)CrossRefGoogle Scholar
  4. 4.
    AbouRizk, S., Halpin, D., Mohamed, Y., Hermann, U.: Research in modeling and simulation for improving construction engineering operations. J. Constr. Eng. Manag. 137(10), 843–852 (2011)CrossRefGoogle Scholar
  5. 5.
    Melouk, S.H., Freeman, N.K., Miller, D., Dunning, M.: Simulation optimization-based decision support tool for steel manufacturing. Int. J. Prod. Econ. 141(1), 269–276 (2013)CrossRefGoogle Scholar
  6. 6.
    Martinez, J.C.: Methodology for conducting discrete-event simulation studies in construction engineering and management. J. Constr. Eng. Manag. 136(1), 3–16 (2009)CrossRefGoogle Scholar
  7. 7.
    González, V., Echaveguren, T.: Exploring the environmental modeling of road construction operations using discrete-event simulation. Autom. Constr. 24, 100–110 (2012)CrossRefGoogle Scholar
  8. 8.
    Sharda, B., Akiya, N.: Selecting make-to-stock and postponement policies for different products in a chemical plant: a case study using discrete event simulation. Int. J. Prod. Econ. 136(1), 161–171 (2012)CrossRefGoogle Scholar
  9. 9.
    Cafaro, V.G., Cafaro, D.C., Méndez, C.A., Cerdá, J.: Oil-derivatives pipeline logistics using discrete-event simulation. In: Proceedings of the Winter Simulation Conference, pp. 2101–2113, December 2010Google Scholar
  10. 10.
    Johansson, B., Stahre, J., Berlin, J., Östergren, K., Sundström, B., Tillman, A.M.: Discrete event simulation with lifecycle assessment data at a juice manufacturing system. In: Proceedings of the 5th FOODSIM Conference, University College Dublin, Ireland (2008)Google Scholar
  11. 11.
    Parthanadee, P., Buddhakulsomsiri, J.: Simulation modeling and analysis for production scheduling using real-time dispatching rules: a case study in canned fruit industry. Comput. Electron. Agric. 70(1), 245–255 (2010)CrossRefGoogle Scholar
  12. 12.
    Geng, N., Jiang, Z.: A review on strategic capacity planning for the semiconductor manufacturing industry. Int. J. Prod. Res. 47(13), 3639–3655 (2009)CrossRefGoogle Scholar
  13. 13.
    Pool, A., Wijngaard, J., Van der Zee, D.J.: Lean planning in the semi-process industry, a case study. Int. J. Prod. Econ. 131(1), 194–203 (2011)CrossRefGoogle Scholar
  14. 14.
    Park, C.M., Seong, K.Y., Park, S.C., Wang, G.N., Han, K.H.: Simulation based control program verification in an automobile industry. In: The International Conference on Modeling Identification and Control, Innsbruck, Austria, February 2008Google Scholar
  15. 15.
    Steinemann, A., Taiber, J., Fadel, G., Wegener, K., Kunz, A.: Adapting discrete-event simulation tools to support tactical forecasting in the automotive industry. CoDesign 9(3), 159–177 (2013)CrossRefGoogle Scholar
  16. 16.
    The Discrete Event Simulation as a Fundamental technique in making high impact decisions. http://www.vaticgroup.com/perspectiva-logistica/ediciones-anteriores/simulacion-deeventos-discretos/
  17. 17.
    Rodríguez, J., Serrano, D., Monleón, T., Caroc, J.: Discrete-event simulation models in the economic evaluation of health technologies and health products. Gac. Sanit. 22(2), 151–161 (2008)CrossRefGoogle Scholar
  18. 18.
    Ortíz-Barrios, M., Jimenez-Delgado, G., De Avila-Villalobos, J.: A computer simulation approach to reduce appointment lead-time in outpatient perinatology departments: a case study in a maternal-child hospital. In: Siuly, S., Huang, Z., Aickelin, U., Zhou, R., Wang, H., Zhang, Y., Klimenko, S. (eds.) HIS 2017. LNCS, vol. 10594, pp. 32–39. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69182-4_4CrossRefGoogle Scholar
  19. 19.
    Negahban, A., Smith, J.: Simulation for manufacturing system design and operation: literature review and analysis. J. Manuf. Syst. 33, 241–261 (2014)CrossRefGoogle Scholar
  20. 20.
    Zupan, H., Herakovic, N.: Production line balancing with discrete event simulation: a case Study. IFAC-Papers onLine 48(3), 2305–2311 (2015).  https://doi.org/10.1016/j.ifacol.2015.06.431CrossRefGoogle Scholar
  21. 21.
    Ortíz-Barrios, M., López-Meza, P., Jimenez-Delgado, G.: Applying computer simulation modelling to minimizing appointment lead-time in elderly outpatient clinics: a case study. In: Ochoa, S.F., Singh, P., Bravo, J. (eds.) UCAmI 2017. LNCS, vol. 10586, pp. 323–329. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67585-5_34CrossRefGoogle Scholar
  22. 22.
    Nuñez-Perez, N., Ortíz-Barrios, M., McClean, S., Salas-Navarro, K., Jimenez-Delgado, G., Castillo-Zea, A.: Discrete-event simulation to reduce waiting time in accident and emergency departments: a case study in a district general clinic. In: Ochoa, S.F., Singh, P., Bravo, J. (eds.) UCAmI 2017. LNCS, vol. 10586, pp. 352–363. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67585-5_37CrossRefGoogle Scholar
  23. 23.
    Reynolds, M., Vasilakis, M., McLeod, N., Barber, A., Mounsey, S., Newton, A., Jacklin, A., Dean, B.: Using discrete event simulation to design a more efficient hospital pharmacy for outpatients. Health Care Manag. Sci. 14(3), 223–236 (2011).  https://doi.org/10.1007/s10729-011-9151-1CrossRefGoogle Scholar
  24. 24.
    Van Merode, G., Hasman, A., Derks, J., Schoenmaker, B., Goldschmidt, H.: Advanced management facilities for clinical laboratories. Comput. Methods Programs Biomed. 50, 195–205 (1996)CrossRefGoogle Scholar
  25. 25.
    Goldschmidt, H., De Vries, J., Van Merode, G., Derks, J.: A workflow management tool for laboratory medicine. Lab. Autom. Inf. Manag. 33, 183–197 (1998)CrossRefGoogle Scholar
  26. 26.
    Akcay, A., Martagan, T.: Stochastic simulation under input uncertainty for contract-manufacturer selection in pharmaceutical industry, pp. 2292–2303 (2016). Electronic ISSN: 1558-4305Google Scholar
  27. 27.
    Sachidanandaa, M., Erkoyuncua, J., Steenstraa, D., Michalskaa, S.: Discrete event simulation modelling for dynamic decision making in biopharmaceutical manufacturing. Procedia CIRP 49, 39–44 (2016)CrossRefGoogle Scholar
  28. 28.
    Andrea Costigliola, A., Ataíde, F., Vieira, S., Sousa, J.: Simulation model of a quality control laboratory in pharmaceutical industry. IFAC-Papers onLine 50(1), 9014–9019 (2017)CrossRefGoogle Scholar
  29. 29.
    Ortiz Barrios, M.A., Escorcia Caballero, J., Sánchez Sánchez, F.: A methodology for the creation of integrated service networks in outpatient internal medicine. In: B, J., Hervás, R., Villarreal, V. (eds.) AmIHEALTH 2015. LNCS, vol. 9456, pp. 247–257. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26508-7_24CrossRefGoogle Scholar
  30. 30.
    Ramírez, L.E., Medoza, F.D., Parody, A., Gonzalez, F., Castro, L.J., Jiménez, M.A.: Simulation model to find the slack time for schedule of the transit operations in off-peak time on the main terminal of massive transport system. Rev. ESPACIOS 38(13), 1 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexander Troncoso-Palacio
    • 1
  • Dionicio Neira-Rodado
    • 1
  • Miguel Ortíz-Barrios
    • 1
    Email author
  • Genett Jiménez-Delgado
    • 2
  • Hugo Hernández-Palma
    • 3
  1. 1.Department of Industrial Management, Agroindustry and OperationsUniversidad de la Costa CUCBarranquillaColombia
  2. 2.Department of Industrial EngineeringCorporación Universitaria Reformada CURBarranquillaColombia
  3. 3.Department of Business ManagementUniversidad del AtlánticoPuerto ColombiaColombia

Personalised recommendations