Advertisement

Application of SVDD Single Categorical Data Description in Motor Fault Identification Based on Health Redundant Data

  • Jianjian Yang
  • Xiaolin WangEmail author
  • Zhiwei Tang
  • Zirui Wang
  • Song Han
  • Yinan Guo
  • Miao Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10942)

Abstract

The system’s self-protection mechanism immediately stops the motor when motor system in the event of a malfunction, so it is difficult to collect the fault data when monitoring the motor status. Under the premise of only collecting motor’s health data, using SVDD algorithm to train health data and building non-health data sets based on practical experience in this paper. Based on BP neural network, a random self-adapting particle swarm optimization algorithm (RSAPSO) is used to substitute the original gradient descent method in BP network, training speed and accuracy of BP network training is improved. Three commonly used test functions were used to test the performance of the improved PSO, and the improved particle swarm optimization is compared with the standard particle swarm optimization, particle swarm optimization with compression factor and adaptive particle swarm optimization. In this paper, three asynchronous motor Y225S-4 output shaft vibration acceleration signal in healthy state as a case to test the effectiveness of the algorithm, results show that in the case of only health data, the new algorithm based on single classification has better performance and can effectively monitor the working state of the motor.

Keywords

Fault identification Health redundant data Support vector data description Particle swarm optimization 

Notes

Acknowledgments

This research is supported by National Program on Key Basic Research Project of China (973 Program) (2014CB046306) and National Natural Science Foundation of China under Grant 61573361.

References

  1. 1.
    Zhong, B.L., Huang, R.: Introduction to Machine Fault Diagnosis. Mechanical Industry Press, Beijing (2006)Google Scholar
  2. 2.
    Zheng, L., Zhe, Z., Xiang, Y.: A summary of on-line condition monitoring and fault diagnostics for 3-phase induction motors. J. Wuhan Yejin Univ. Sci. Technol. 24(3), 285–289 (2001)Google Scholar
  3. 3.
    Park, Y.M., Kim, G.W., Sohn, J.M.: A logic based expert system (LBES) for fault diagnosis of power system. IEEE Trans. Power Syst. 12(1), 363–369 (1997).  https://doi.org/10.1109/59.574960CrossRefGoogle Scholar
  4. 4.
    Vazquez, E., Chacon, O.L., Altuve, H.J.: An on-line expert system for fault section diagnosis in power systems. IEEE Trans. Power Syst. 12(1), 357–362 (1997).  https://doi.org/10.1109/59.574959CrossRefGoogle Scholar
  5. 5.
    Wen, L., Li, X., Gao, L., Zhang, Y.: A new convolutional neural network based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 65(7), 5990–5998 (2017).  https://doi.org/10.1109/tie.2017.2774777CrossRefGoogle Scholar
  6. 6.
    Saucedo-Dorantes, J., Delgado-Prieto, M., Osornio-Rios, R., Romero-Troncoso, R.: Multi-fault diagnosis method applied to an electric machine based on high-dimensional feature reduction. IEEE Trans. Ind. Appl. PP(99), 1 (2016).  https://doi.org/10.1109/tia.2016.2637307CrossRefGoogle Scholar
  7. 7.
    Zhang, Y., Ding, X., Liu, Y., Griffin, P.J.: An artificial neural network approach to transformer fault diagnosis. IEEE Trans. Power Delivery 11(4), 1836–1841 (2002).  https://doi.org/10.1109/61.544265CrossRefGoogle Scholar
  8. 8.
    Shu, M.H., Cheng, C.H., Chang, J.R.: Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly. Microelectron. Reliab. 46(12), 2139–2148 (2006).  https://doi.org/10.1016/j.microrel.2006.01.007CrossRefGoogle Scholar
  9. 9.
    Volkanovski, A., Čepin, M., Mavko, B.: Application of the fault tree analysis for assessment of power system reliability. Reliab. Eng. Syst. Saf. 94(6), 1116–1127 (2009).  https://doi.org/10.1016/j.ress.2009.01.004CrossRefGoogle Scholar
  10. 10.
    Gao, J., Hu, N., Jiang, L., Fu, J.: A new condition monitoring and fault diagnosis method of engine based on spectrometric oil analysis. Wear 110, 117–124 (2011).  https://doi.org/10.1016/j.wear.2007.02.022CrossRefGoogle Scholar
  11. 11.
    Huimin, L.I., Zhenlei, L.I., Rongjun, H.E., Yan, Y.: Rock burst risk evaluation based on particle swarm optimization and bp neural network. J. Min. Saf. Eng. 31(2), 203–207+231 (2014) Google Scholar
  12. 12.
    Han, X.H., Xiong, X., Duan, F.: A new method for image segmentation based on BP neural network and gravitational search algorithm enhanced by cat chaotic mapping. Appl. Intell. 43(4), 855–873 (2015).  https://doi.org/10.1007/s10489-015-0679-5CrossRefGoogle Scholar
  13. 13.
    Niu, M., Sun, S., Wu, J., Zhang, Y.: Short-term wind speed hybrid forecasting model based on bias correcting study and its application. Math. Prob. Eng. 2015, 1–13 (2015).  https://doi.org/10.1155/2015/351354CrossRefGoogle Scholar
  14. 14.
    Liu, Y.M., Niu, B.: Theory and Practice of New Particle Swarm Optimization, Beijing (2013) Google Scholar
  15. 15.
    Jie, W.U., Shangguan, W.B., Jing, T., Song, Z.S., Huang, Z.L.: Robust analysis for decoupling layout of a powertrain mounting system. J. Vibr. Shock (2009) Google Scholar
  16. 16.
    Banerjee, A., Burlina, P., Meth, R.: Fast hyperspectral anomaly detection via SVDD. In: IEEE International Conference on Image Processing, vol. 4, pp. IV-101–IV-104. IEEE (2007).  https://doi.org/10.1109/icip.2007.4379964
  17. 17.
    Luo, H., Jiang Cui, Y.W.: A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor. Expert Syst. Appl. 38(8), 10554–10561 (2011).  https://doi.org/10.1016/j.eswa.2011.02.087CrossRefGoogle Scholar
  18. 18.
    Yang, Z., Wang, S., Fu, X.: Pattern recognition-based chillers fault detection method using support vector data description (SVDD). Appl. Energy 112(4), 1041–1048 (2013).  https://doi.org/10.1016/j.apenergy.2012.12.043CrossRefGoogle Scholar
  19. 19.
    Liu, Y.H., Lin, S.H., Hsueh, Y.L., Lee, M.J.: Automatic target defect identification for TFT-LCD array process inspection using kernel FCM-based fuzzy SVDD ensemble. Expert Syst. Appl. 36(2), 1978–1998 (2009).  https://doi.org/10.1016/j.eswa.2007.12.015CrossRefGoogle Scholar
  20. 20.
    Tao, X.M., Chen, W.H., Du, B.X., Xu, Y., Dong, H.G.: A novel model of one-class bearing fault detection using SVDD and genetic algorithm. In: IEEE Conference on Industrial Electronics and Applications, ICIEA 2007, pp. 802–807. IEEE (2007).  https://doi.org/10.1109/iciea.2007.4318518

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jianjian Yang
    • 1
  • Xiaolin Wang
    • 1
    Email author
  • Zhiwei Tang
    • 1
  • Zirui Wang
    • 1
  • Song Han
    • 1
  • Yinan Guo
    • 2
  • Miao Wu
    • 1
  1. 1.China University of Mining and Technology (Beijing)BeijingChina
  2. 2.China University of Mining and TechnologyXuzhouChina

Personalised recommendations