An Ensemble Classifier Based on Three-Way Decisions for Social Touch Gesture Recognition

  • Gangqiang ZhangEmail author
  • Qun Liu
  • Yubin Shi
  • Hongying Meng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10942)


Touch is an important form of social interaction. In Human Robot Interaction (HRI), touch can provide additional information to other modalities, such as audio, visual. In this paper, an ensemble classifier based on three-way decisions is proposed to recognize touch gestures. Firstly, features are extracted from six perspectives and four classifiers are constructed on different scales with different preprocessing methods. Then an ensemble classifier is used to combine the four classifiers to classify touch gestures. Our method is tested on the public Corpus of Social Touch (CoST) dataset. The experiment results not only verify the validity of our method but also show a better performance of our ensemble classifier.


Touch gesture recognition Data preprocessing Ensemble classifier Three-way decisions 



The work is supported by the Key Research and Development Program of Chongqing (cstc2017zdcy-zdyfx0091) and the Key Research and Development Program on AI of Chongqing (cstc2017rgzn-zdyfx0022) and the National Nature Science Foundation of China (61572091).


  1. 1.
    Hertenstein, M.J., Verkamp, J.M., Kerestes, A.M., Holmes, R.M.: The communicative functions of touch in humans, nonhuman primates, and rats: a review and synthesis of the empirical research. Genet. Soc. Gen. Psychol. Monogr. 132(1), 5–94 (2006)CrossRefGoogle Scholar
  2. 2.
    Gallace, A., Spence, C.: The science of interpersonal touch: an overview. Neurosci. Biobehav. Rev. 34(2), 246–259 (2010)CrossRefGoogle Scholar
  3. 3.
    Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009)CrossRefGoogle Scholar
  4. 4.
    Jung, M.M., Poel, M., Poppe, R., Heylen, D.K.: Automatic recognition of touch gestures in the corpus of social touch. J. Multimodal User Interfaces 11(1), 81–96 (2017)CrossRefGoogle Scholar
  5. 5.
    Jung, M.M., Poppe, R., Poel, M., Heylen, D.K.: Touching the void-introducing cost: corpus of social touch. In: Proceedings of the 16th International Conference on Multimodal Interaction, pp. 120–127. ACM (2014)Google Scholar
  6. 6.
    Silvera-Tawil, D., Rye, D., Velonaki, M.: Interpretation of social touch on an artificial arm covered with an eit-based sensitive skin. Int. J. Soc. Robot. 6(4), 489–505 (2014)CrossRefGoogle Scholar
  7. 7.
    Jung, M.M., Cang, X.L., Poel, M., MacLean, K.E.: Touch challenge’15: Recognizing social touch gestures. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 387–390. ACM (2015)Google Scholar
  8. 8.
    Yohanan, S., MacLean, K.E.: The role of affective touch in human-robot interaction: human intent and expectations in touching the haptic creature. Int. J. Soc. Robot. 4(2), 163–180 (2012)CrossRefGoogle Scholar
  9. 9.
    Hughes, D., Farrow, N., Profita, H., Correll, N.: Detecting and identifying tactile gestures using deep autoencoders, geometric moments and gesture level features. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 415–422. ACM (2015)Google Scholar
  10. 10.
    Balli Altuglu, T., Altun, K.: Recognizing touch gestures for social human-robot interaction. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 407–413. ACM (2015)Google Scholar
  11. 11.
    Gaus, Y.F.A., Olugbade, T., Jan, A., Qin, R., Liu, J., Zhang, F., Meng, H., Bianchi-Berthouze, N.: Social touch gesture recognition using random forest and boosting on distinct feature sets. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 399–406. ACM (2015)Google Scholar
  12. 12.
    Ta, V.C., Johal, W., Portaz, M., Castelli, E., Vaufreydaz, D.: The grenoble system for the social touch challenge at ICMI 2015. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 391–398. ACM (2015)Google Scholar
  13. 13.
    Yao, Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180(3), 341–353 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yao, Y.: An outline of a theory of three-way decisions. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 1–17. Springer, Heidelberg (2012). Scholar
  15. 15.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefGoogle Scholar
  16. 16.
    Wingerden, S., Uebbing, T.J., Jung, M.M., Poel, M.: A neural network based approach to social touch classification. In: Proceedings of the 2014 Workshop on Emotion Representation and Modelling in Human-Computer-Interaction-Systems, pp. 7–12. ACM (2014)Google Scholar
  17. 17.
    Yao, Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models. Inf. Sci. 178(17), 3356–3373 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jia, X.Y., Li, W.W., Shang, L., Chen, J.J.: An adaptive learning parameters algorithm in three-way decision-theoretic rough set model. Dianzi Xuebao (Acta Electronica Sinica) 39(11), 2520–2525 (2011) (in Chinese)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gangqiang Zhang
    • 1
    Email author
  • Qun Liu
    • 1
  • Yubin Shi
    • 1
  • Hongying Meng
    • 2
  1. 1.Chongqing Key Laboratory of Computational IntelligenceChongqing University of Posts and TelecommunicationsChongqingPeople’s Republic of China
  2. 2.Department of Electronic and Computer EngineeringBrunel University LondonUxbridgeUK

Personalised recommendations