VPSO-Based CCR-ELM for Imbalanced Classification

  • Yi-nan Guo
  • Pei Zhang
  • Ning Cui
  • JingJing Chen
  • Jian ChengEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10942)


In class-specific cost regulation extreme learning machine (CCR-ELM) for the class imbalance problems, the key parameters, including the number of hidden nodes, the input weights, the hidden biases and the tradeoff factors are normally chosen randomly or preset by human. This made the algorithm responding slowly and generalization worse. Unsuitable quantity of hidden nodes might form some useless neuron nodes and make the network complex. So an improved CCR-ELM based on particle swarm optimization with variable length is present. Each particle consists of above key parameters and its length varies with the number of hidden nodes. The experimental results for nine imbalance dataset show that particle swarm optimization with variable length can find better parameters of CCR-ELM and corresponding CCR-ELM had better classification accuracy. In addition, the classification performance of the proposed classification algorithm is relatively stable under different imbalance ratios.


Variable length Particle swarm optimization Class-specific cost regulation extreme learning machine The class imbalance 



This work is supported by National Natural Science Foundation of China under Grant 61573361, National Key Research and Development Program under Grant 2016YFC0801406, and Six talent peaks project in Jiangsu Province under Grant No.2017-DZXX-046.


  1. 1.
    Chawla, N.V., Bowyer, K.W., Hall, L.O., et al.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002)CrossRefGoogle Scholar
  2. 2.
    Ramentol, E., Caballero, Y., Bello, R., et al.: SMOTE-RS B: A hybrid preprocessing approach based on oversampling and undersampling for high imbalanced datasets using SMOTE and rough sets theory. Knowl. Inf. Syst. 33(2), 245–265 (2012)CrossRefGoogle Scholar
  3. 3.
    Gao, M., Hong, X., Chen, S., et al.: A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems. Neurocomputing 74(17), 3456–3466 (2011)CrossRefGoogle Scholar
  4. 4.
    Sun, Y., Kamel, M.S., Wong, A.K.C., et al.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn. 40(12), 3358–3378 (2007)CrossRefGoogle Scholar
  5. 5.
    Wu, G., Chang, E.Y.: KBA: kernel boundary alignment considering imbalanced data distribution. IEEE Trans. Knowl. Data Eng. 17(6), 786–795 (2005)CrossRefGoogle Scholar
  6. 6.
    Zong, W., Huang, G.B., Chen, Y.: Weighted extreme learning machine for imbalance learning. Neurocomputing 101, 229–242 (2013)CrossRefGoogle Scholar
  7. 7.
    Xiao, W., Zhang, J., Li, Y., et al.: Class-specific cost regulation extreme learning machine for imbalanced classification. Neurocomputing 261, 70–82 (2017)CrossRefGoogle Scholar
  8. 8.
    Rong, H.J., Huang, G.B., Sundararajan, N., et al.: Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans. Syst. Man Cybern. Part B 39(4), 1067–1072 (2009)CrossRefGoogle Scholar
  9. 9.
    Mirza, B., Lin, Z., Liu, N.: Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift. Neurocomputing 149, 316–329 (2015)CrossRefGoogle Scholar
  10. 10.
    Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)CrossRefGoogle Scholar
  11. 11.
    Huang, G., Song, S., Gupta, J.N., et al.: Semi-supervised and unsupervised extreme learning machines. IEEE Trans. Cybern. 44(12), 2405–2417 (2014)CrossRefGoogle Scholar
  12. 12.
    Huang, D.S., Ip, H.H., Law, K.C., et al.: Zeroing polynomials using modified constrained neural network approach. IEEE Trans. Neural Netw. 16(3), 721–732 (2005)CrossRefGoogle Scholar
  13. 13.
    Ertam, F., Avcı, E.: A new approach for internet traffic classification: GA-WK-ELM. Measurement 95, 135–142 (2016)CrossRefGoogle Scholar
  14. 14.
    Guo, Y.N., Zhang, P., Cheng, J., et al.: Interval multi-objective quantum-inspired cultural algorithms. Neural Comput. Appl. 1–14 (2016)Google Scholar
  15. 15.
    Han, F., Yao, H.F., Ling, Q.H.: An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 116, 87–93 (2013)CrossRefGoogle Scholar
  16. 16.
    Guo, Y.-n., Zhang, P., Cheng, J., Zhang, Y., Yang, L., Shen, X., Fang, W.: An improved weighted ELM with Krill Herd algorithm for imbalanced learning. In: Tan, Y., Takagi, H., Shi, Y., Niu, B. (eds.) ICSI 2017. LNCS, vol. 10386, pp. 371–378. Springer, Cham (2017). Scholar
  17. 17.
    Hu, C.Y., Hu, B.J., Xiong, Y.H.: Mobile agent routing using variable-dimension PSO algorithm based on chord-length parameterization. National Doctoral Academic Forum on Information and Communications Technology, IET, 7–7 (2013)Google Scholar
  18. 18.
    Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2010).
  19. 19.
    Yu, H., Sun, C., Yang, X., et al.: ODOC-ELM: Optimal decision outputs compensation-based extreme learning machine for classifying imbalanced data. Knowl.-Based Syst. 92, 55–70 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yi-nan Guo
    • 1
  • Pei Zhang
    • 1
  • Ning Cui
    • 1
  • JingJing Chen
    • 1
  • Jian Cheng
    • 1
    Email author
  1. 1.School of Information and Control EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations