Mapping the Landscapes, Hotspots and Trends of the Social Network Analysis Research from 1975 to 2017

  • Li ZengEmail author
  • Zili LiEmail author
  • Zhao ZhaoEmail author
  • Meixin MaoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10942)


A Bibliometric analysis was applied in this paper to quantitatively evaluate the social network analysis research from 1975 to 2017 based on 7311 bibliographic records collected from the Science Citation Index (SCI) database. Firstly, a comprehensive analysis was conducted to reveal the current landscapes such as scientific outputs, international collaboration, subject categories, and research performances by individuals, we then use innovative methods such as Burst Detection, Referenced Publication Years Spectroscopy and Keyword Semantic Clustering to provide a dynamic view of the evolution of social network analysis research hotpots and trends from various perspectives. Results shows that social network analysis research has developed rapidly in the past four decades and is in the growth period with a maturity of 50.00%, the total of 7311 articles cover 120 countries (regions) and the top five most productive countries are USA, England, China, Canada and Germany. Among the 1181 major journal related to social network analysis, University of Illinois, University of Sydney and Carnegie Mellon University ranked as the top three. In addition burst keywords such as Knowledge Management, Centrality, Modularity, Community, Link Prediction, Learning Analytics and Big Data demonstrate the trends of this field. The result provides a dynamic view of the evolution of Social Network Analysis research landscapes, hotspots and trends from various perspectives which may serve as a potential guide for future research.


Social network analysis Bibliometric Research hotspots 


  1. 1.
    Borgatti, S.P., Brass, D.J., Labianca, G.J., Mehra, A.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)CrossRefGoogle Scholar
  2. 2.
    Otte, E., Rousseau, R.: Social network analysis: a powerful strategy, also for the information sciences. J. Inf. Sci. 28(6), 441–453 (2002)CrossRefGoogle Scholar
  3. 3.
    Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311(5757), 88–90 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zheng, X., Le, Y., Chan, A.P.C., Hu, Y., Li, Y.: Review of the application of social network analysis (sna) in construction project management research. Int. J. Project Manage. 34(7), 1214–1225 (2016)CrossRefGoogle Scholar
  5. 5.
    Cela, K.L., Sicilia, M.Á., Sánchez, S.: Social network analysis in e-learning environments: a preliminary systematic review. Educ. Psychol. Rev. 27(1), 219–246 (2015)CrossRefGoogle Scholar
  6. 6.
    Hasenjager, M.J., Dugatkin, L.A.: Social network analysis in behavioral ecology. Adv. Study Behav. 47, 39–114 (2015)CrossRefGoogle Scholar
  7. 7.
    Martínez-López, B., Perez, A.M., Sánchez-Vizcaíno, J.M.: Social network analysis. review of general concepts and use in preventive veterinary medicine. Transbound. Emerg. Dis. 56(4), 109–120 (2009)CrossRefGoogle Scholar
  8. 8.
    Butts, C.T.: Social network analysis: a methodological introduction. Asian J. Soc. Psychol. 11(1), 13–41 (2010)CrossRefGoogle Scholar
  9. 9.
    Ingold, K.: Network structures within policy processes: coalitions, power, and brokerage in swiss climate policy. Policy Stud. J. 39(3), 435–459 (2011)CrossRefGoogle Scholar
  10. 10.
    Butts, C.T.: Social network analysis: a methodological introduction. Asian J. Soc. Psychol. 11(1), 13–41 (2008)CrossRefGoogle Scholar
  11. 11.
    Alʹtshuller, G.S. (Genrikh Saulovich), Shulyak, L.A., Rodman, S.: The innovation algorithm: triz, systematic innovation and technical creativity. Aseanheartjournal Org (1999)Google Scholar
  12. 12.
    Rogosa, D., Brandt, D., Zimowski, M.: A growth curve approach to the measurement of change. Psychol. Bull. 92(3), 726–748 (1982)CrossRefGoogle Scholar
  13. 13.
    Havre, S.L., Hetzler, E.G., Nowell, L.T.: ThemeRiver: Visualizing Theme Changes over Time. INFOVIS (2000)Google Scholar
  14. 14.
    Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics (2009)Google Scholar
  15. 15.
    Chen, C.: Citespace ii: detecting and visualizing emerging trends and transient patterns in scientific literature. J. Assoc. Inf. Sci. Technol. 57(3), 359–377 (2009)CrossRefGoogle Scholar
  16. 16.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1979)CrossRefGoogle Scholar
  17. 17.
    Kleinberg, J.M.: Bursty and Hierarchical Structure in Streams. Data Min. Knowl. Disc. 7, 373–397 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chen, C.: Mapping Scientific Frontiers: The Quest for Knowledge Visualization by Chaomei Chen. Springer, New York (2003). 256 pps, $79.95 (ISBN: 0-85233-494-0). Information Retrieval, 8, 505–507Google Scholar
  19. 19.
    Egghe, L.: Theory and practise of the g-index. Scientometrics 69, 131–152 (2006)CrossRefGoogle Scholar
  20. 20.
    Bornmann, L., Barth, A., Leydesdorff, L., Marx, W.: Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS). JASIST 65, 751–764 (2014)Google Scholar
  21. 21.
    Bornmann, L., Haunschild, R., Leydesdorff, L.: Reference publication year spectroscopy (rpys) of eugene garfield’s publications. Scientometrics 114(2), 1–10 (2018)Google Scholar
  22. 22.
    Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973)CrossRefGoogle Scholar
  23. 23.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)CrossRefGoogle Scholar
  24. 24.
    Coleman, J.S.: Social Capital in the Creation of Human Capital. Am. J. Sociol. 94, S95–S120 (1988)CrossRefGoogle Scholar
  25. 25.
    Burt, R.S.: Structural Holes: The Social Structure of Competition. Harvard University Press, Cambridge (1992)Google Scholar
  26. 26.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, p. 506. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  27. 27.
    Hanneman, R.A., Riddle, M.: Introduction to social network methods. Department of Sociology University of California Riverside (2005)Google Scholar
  28. 28.
    Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (p *) models for social networks. Circuits Syst. & Sig. Process. 29(2), 173–191 (2007)Google Scholar
  29. 29.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2009)MathSciNetGoogle Scholar
  30. 30.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality, 26, pp. 3111–3119 (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Advanced Interdisciplinary StudiesNational University of Defense TechnologyChangshaChina

Personalised recommendations