Advertisement

A Space Tendon-Driven Continuum Robot

  • Shineng Geng
  • Youyu Wang
  • Cong Wang
  • Rongjie KangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10942)

Abstract

In order to avoid the collision of space manipulation, a space continuum robot with passive structural flexibility is proposed. This robot is composed of two continuum joints with elastic backbone and driving tendons made of NiTi alloy. The kinematic mapping and the Jacobian matrix are obtained through the kinematic analysis. Moreover, an inverse kinematics based closed-loop controller is designed to achieve position tracking. Finally, a simulation and an experiment is carried out to validate the workspace and control algorithm respectively. The results show that this robot can follow a given trajectory with satisfactory accuracy.

Keywords

Space manipulation Continuum robot Kinematics 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51721003 and 51535008).

References

  1. 1.
    Yoshida, K.: Achievements in space robotics. IEEE Robot. Autom. Mag. 16(4), 20–28 (2009)CrossRefGoogle Scholar
  2. 2.
    Boumans, R., Heemskerk, C.: The European robotic arm for the international space station. Robot. Auton. Syst. 23(1–2), 17–27 (1998)CrossRefGoogle Scholar
  3. 3.
    Li, D.M., Rao, W., Hu, C.W., Wang, Y.B., Tang, Z.X., Wang, Y.Y.: Overview of the Chinese space station manipulator. In: AIAA SPACE 2015 Conference and Exposition 2015, Pasadena, USA (2015)Google Scholar
  4. 4.
    Liu, S.P., et al.: Impact dynamics and control of a flexible dual-arm space robot capturing an object. Appl. Math. Comput. 185(2), 1149–1159 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Jiao, C., Liang, B., Wang, X.: Adaptive reaction null-space control of dual-arm space robot for post-capture of non-cooperative target. In: Control and Decision Conference 2017, Chongqing, China, pp. 531–537 (2017)Google Scholar
  6. 6.
    Wu, H., et al.: Optimal trajectory planning of a flexible dual-arm space robot with vibration reduction. J. Intell. Robot. Syst. 40(2), 147–163 (2004)CrossRefGoogle Scholar
  7. 7.
    Huang, P., Xu, Y., Liang, B.: Dynamic balance control of multi-arm free-floating space robots. Int. J. Adv. Robot. Syst. 2(2), 398–403 (2008)Google Scholar
  8. 8.
    Tonapi, M.M., et al.: Next generation rope-like robot for in-space inspection. In: IEEE Aerospace Conference 2014, Big Sky, MT, USA, pp. 1–13 (2014)Google Scholar
  9. 9.
    Robinson, G., et al.: Continuum robots-a state of the art. In: International Conference on Robotics and Automation 1999, Detroit, Michigan, vol. 4, no. 7, pp. 2849–2854 (1999)Google Scholar
  10. 10.
    Jones, B.A., Walker, I.D.: Kinematics for multi-section continuum robots. IEEE Trans. Robot. 22(1), 43–55 (2006)CrossRefGoogle Scholar
  11. 11.
    McMahan, W., et al.: Field trials and testing of the oct-arm continuum manipulator. In: IEEE International Conference on Robotics and Automation 2006, Orlando, Florida, pp. 2336–2341 (2006)Google Scholar
  12. 12.
    Mehling, L.S., Diftler, M.A., Chu, M., et al.: A minimally invasive tendril robot for in-space inspection. In: IEEE BioRobotics Conference 2006, pp. 690–695 (2006)Google Scholar
  13. 13.
    Walker, I.D.: Robot strings: long, thin continuum robots. In: IEEE Aerospace Conference, pp. 1–12 (2013)Google Scholar
  14. 14.
    Simaan, N., Taylor, R., Flint, P.: High dexterity snake-like robotic slaves for minimally invasive telesurgery of the upper airway. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. Lecture Notes in Computer Science, vol. 3217. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30136-3_3CrossRefGoogle Scholar
  15. 15.
    Simaan, N.: Snake-like units using flexible backbones and actuation redundancy for enhanced miniaturization. In: IEEE International Conference on Robotics and Automation 2005, Piscataway, NJ, USA, pp. 3012–3017 (2005)Google Scholar
  16. 16.
    Xu, K., Simaan, N., et al.: An investigation of the intrinsic force sensing capabilities of continuum robots. IEEE Trans. Robot. 24, 576–587 (2008)CrossRefGoogle Scholar
  17. 17.
    Kang, R., Branson, D.T., Zheng, T., et al.: Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures. Bioinspiration Biomim. 8(3), 036008 (2013)CrossRefGoogle Scholar
  18. 18.
    Camarillo, D.B., Milne, C.F., Carlson, C.R.: Mechanics modeling of tendon-driven continuum manipulators. IEEE Trans. Robot. 24(6), 1262–1273 (2008)CrossRefGoogle Scholar
  19. 19.
    Li, M., Kang, R., Geng, S., Guglielmino, E.: Design and control of a tendon-driven continuum robot. Trans. Inst. Meas. Control (2017).  https://doi.org/10.1177/0142331216685607CrossRefGoogle Scholar
  20. 20.
    Li, M., Kang, R., et al.: Model-free control for continuum robots based on an adaptive Kalman filter. IEEE/ASME Trans. Mechatron. 23(1), 286–297 (2018)CrossRefGoogle Scholar
  21. 21.
    Hammond, P.H.: Modern Control Theory. Prentice-Hall, New York (1985)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shineng Geng
    • 1
  • Youyu Wang
    • 2
  • Cong Wang
    • 1
  • Rongjie Kang
    • 1
    Email author
  1. 1.Key Laboratory of Mechanism Theory and Equipment Design, Ministry of Education, School of Mechanical EngineeringTianjin UniversityTianjinChina
  2. 2.Beijing Institute of Spacecraft System Engineering CASTBeijingChina

Personalised recommendations