Using FAHP-VIKOR for Operation Selection in the Flexible Job-Shop Scheduling Problem: A Case Study in Textile Industry

  • Miguel Ortíz-BarriosEmail author
  • Dionicio Neira-Rodado
  • Genett Jiménez-Delgado
  • Hugo Hernández-Palma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10942)


Scheduling of Flexible Job Shop Systems is a combinatorial problem which has been addressed by several heuristics and meta-heuristics. Nevertheless, the operation selection rules of both methods are limited to an ordered variant wherein priority-dispatching rules are not simultaneously deemed in the reported literature. Therefore, this paper presents the application of dispatching algorithm with operation selection based on Fuzzy Analytic Hierarchy Process (FAHP) and VIKOR methods while considering setup times and transfer batches. Dispatching, FAHP, and VIKOR algorithms are first defined. Second, a multi-criteria decision-making model is designed for operation prioritization. Then, FAHP is applied to calculate the criteria weights and overcome the uncertainty of human judgments. Afterwards, VIKOR is used to select the operation with the highest priority. A case study in the textile industry is shown to validate this approach. The results evidenced, compared to the company solution, a reduction of 61.05% in average delay.


Flexible job shop problem Scheduling Dispatching algorithm Fuzzy Analytic Hierarchy Process (FAHP) VIKOR 


  1. 1.
    Neufeld, J.S., Gupta, J.N.D., Buscher, U.: A comprehensive review of flowshop group scheduling literature (2016)Google Scholar
  2. 2.
    Ortiz, M., Neira, D., Jiménez, G., Hernández, H.: Solving flexible job-shop scheduling problem with transfer batches, setup times and multiple resources in apparel industry. In: Tan, Y., Shi, Y., Li, L. (eds.) ICSI 2016. LNCS, vol. 9713, pp. 47–58. Springer, Cham (2016). Scholar
  3. 3.
    Neira Rodado, D., Escobar, J.W., García-Cáceres, R.G., Niebles Atencio, F.A.: A mathematical model for the product mixing and lot-sizing problem by considering stochastic demand. Int. J. Ind. Eng. Comput. 8(2), 237–250 (2016)Google Scholar
  4. 4.
    Landinez-Lamadrid, D.C., Ramirez-Ríos, D.G., Neira Rodado, D., Parra Negrete, K., Combita Niño, J.: Shapley Value: its Algorithms and Application to Supply Chains El valor de Shapley: sus Algoritmos y Aplicación en Cadenas de Suministro, Enero-Junio, vol. 13, no. 2, pp. 61–69 (2017)CrossRefGoogle Scholar
  5. 5.
    Atencio, F.N., Prasca, A.B., Rodado, D.N., Casseres, D.M., Santiago, M.R.: A comparative approach of ant colony system and mathematical programming for task scheduling in a mineral analysis laboratory, vol. 9712 (2016)Google Scholar
  6. 6.
    Ortiz Barrios, M., Neira Rodado, D., Jiménez, G., López Meza, P.: Integration of dispatching algorithm and AHP-TOPSIS method for flexible job-shop scheduling problem: a case study from the apparel industry. Int. J. Control Theory Appl. (2016)Google Scholar
  7. 7.
    Conway, R.W., Maxwell, W.L.: Theory of Scheduling. Dover, New York (2003)zbMATHGoogle Scholar
  8. 8.
    Melanie, M.: An Introduction to Genetic Algorithms Library of Congress Cataloging − in − Publication Data (1998)Google Scholar
  9. 9.
    Kumar, R., Jain, A.: Assessment of makespan performance for flexible process plans in job shop scheduling, pp. 1948–1953 (2015)Google Scholar
  10. 10.
    Calleja, G., Pastor, R.: A dispatching algorithm for flexible job-shop scheduling with transfer batches: an industrial application. Prod. Plan. Control 25(2), 93–109 (2014)CrossRefGoogle Scholar
  11. 11.
    Dargi, A., Anjomshoae, A., Galankashi, M.R., Memari, A., Tap, M.B.M.: Supplier selection: a fuzzy-ANP approach. Procedia Comput. Sci. 31, 691–700 (2014)CrossRefGoogle Scholar
  12. 12.
    Demir, Y., Kürşat İşleyen, S.: Evaluation of mathematical models for flexible job-shop scheduling problems. Appl. Math. Model. 37(3), 977–988 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhang, G., Gao, L., Shi, Y.: An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Syst. Appl. 38(4), 3563–3573 (2011)CrossRefGoogle Scholar
  14. 14.
    Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Computing 45(4), 369–375 (1990)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Genova, K., Kirilov, L., Guliashki, V.: A survey of solving approaches for multiple objective flexible job shop scheduling problemsGoogle Scholar
  16. 16.
    Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 41(3), 157–183 (1993)CrossRefGoogle Scholar
  17. 17.
    Wu, Z.: Multi-agent workload control and flexible job shop scheduling. University of South Florida (2005)Google Scholar
  18. 18.
    Tanev, I.T., Uozumi, T., Morotome, Y.: Hybrid evolutionary algorithm-based real-world flexible job shop scheduling problem: application service provider approach. Appl. Soft Comput. 5(1), 87–100 (2004)CrossRefGoogle Scholar
  19. 19.
    Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res. 35(10), 3202–3212 (2008)CrossRefGoogle Scholar
  20. 20.
    Low, C., Yip, Y., Wu, T.-H.: Modelling and heuristics of FMS scheduling with multiple objectives. Comput. Oper. Res. 33(3), 674–694 (2006)CrossRefGoogle Scholar
  21. 21.
    Fattahi, P., Saidi Mehrabad, M., Jolai, F.: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. J. Intell. Manuf. 18(3), 331–342 (2007)CrossRefGoogle Scholar
  22. 22.
    Saaty, T.L.: Decision making with dependence and feedback: the analytic network process, pp. 83–135. RWS Publications (2001)Google Scholar
  23. 23.
    Ortíz, M.A., Cómbita, J.P., Hoz, Á.L.A.D.L., Felice, F.D., Petrillo, A.: An integrated approach of AHP-DEMATEL methods applied for the selection of allied hospitals in outpatient service. Int. J. Med. Eng. Inform. 8(2), 87–107 (2016)CrossRefGoogle Scholar
  24. 24.
    İç, Y.T., Yurdakul, M.: Development of a decision support system for machining center selection. Expert Syst. Appl. 36(2), 3505–3513 (2009)CrossRefGoogle Scholar
  25. 25.
    Lee, S.H.: Using fuzzy AHP to develop intellectual capital evaluation model for assessing their performance contribution in a university. Expert Syst. Appl. 37(7), 4941–4947 (2010)CrossRefGoogle Scholar
  26. 26.
    Zavadskas, E.K., Govindan, K., Antucheviciene, J., Turskis, Z.: Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues. Economic Research-Ekonomska Istraživanja 29(1), 857–887 (2016)CrossRefGoogle Scholar
  27. 27.
    Ertuğrul, Đ., Karakasoğlu, N.: Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods. Expert Syst. Appl. 36(1), 702–715 (2009)CrossRefGoogle Scholar
  28. 28.
    Opricovic, S., Tzeng, G.H.: Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156(2), 445–455 (2004)CrossRefGoogle Scholar
  29. 29.
    Barrios, M.A.O.: Teoría de restricciones y modelación PL como herramientas de decisión estratégica para el incremento de la productividad en la línea de toallas de una compañía del sector textil y de confecciones. Prospectiva 11(1), 21–30 (2013)CrossRefGoogle Scholar
  30. 30.
    Gao, K.Z., Suganthan, P.N., Pan, Q.K., Chua, T.J., Cai, T.X., Chong, C.S.: Pareto-based grouping discrete harmony search algorithm for multi-objective flexible job shop scheduling. Inf. Sci. 289, 76–90 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yuan, Y., Xu, H.: An integrated search heuristic for large-scale flexible job shop scheduling problems. Comput. Oper. Res. 40(12), 2864–2877 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Miguel Ortíz-Barrios
    • 1
    Email author
  • Dionicio Neira-Rodado
    • 1
  • Genett Jiménez-Delgado
    • 2
  • Hugo Hernández-Palma
    • 3
  1. 1.Department of Industrial Management, Agroindustry and OperationsUniversidad de la Costa CUCBarranquillaColombia
  2. 2.Department of Industrial EngineeringCorporación Universitaria Reformada CURBarranquillaColombia
  3. 3.Department of Business ManagementUniversidad del AtlánticoPuerto ColombiaColombia

Personalised recommendations