Contribution of Social Network Analysis and Collective Phenomena to Understanding Social Complexity and Cognition

  • Denis BoyerEmail author
  • Gabriel Ramos-Fernandez
Part of the Interdisciplinary Evolution Research book series (IDER)


The social brain hypothesis postulates the increasing complexity of social interactions as a driving force for the evolution of cognitive abilities. Whereas dyadic and triadic relations play a basic role in defining social behaviours and pose many challenges for the social brain, individuals in animal societies typically belong to relatively large networks. How the structure and dynamics of these networks also contribute to the evolution of cognition, and vice versa, is less understood. Here we review how collective phenomena can occur in systems where social agents do not require sophisticated cognitive skills, and how complex networks can grow from simple probabilistic rules, or even emerge from the interaction between agents and their environment, without explicit social factors. We further show that the analysis of social networks can be used to develop good indicators of social complexity beyond the individual or dyadic level. We also discuss the types of challenges that the social brain must cope within structured groups, such as higher information fluxes, originating from individuals playing different roles in the network, or dyadic contacts of widely varying durations and frequencies. We discuss the relevance of these ideas for primates and other animals’ societies.


Collective phenomena Complex networks Agent-based modelling Group cognition 



We acknowledge financial support from DGPA-PAPIIT grant IN105015, CONACYT grant 157656 and Instituto Politecnico Nacional. We thank Louise Barrett for fruitful comments on the manuscript.


  1. Albert R, Jeong H, Barabási A-L (2000) Attack and error tolerance of complex networks. Nature 406:378–382CrossRefGoogle Scholar
  2. Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469(3):93–153CrossRefGoogle Scholar
  3. Aureli F, Schaffner CM, Boesch C, Bearder SK, Call J, Chapman CA, Connor R, Di Fiore A, Dunbar RIM, Peter Henzi S, Holekamp K, Korstjens AH, Layton R, Lee P, Lehmann J, Manson JH, Ramos-Fernandez G, Strier KB, van Schaik CP (2008) Fission-fusion dynamics: new research frameworks [with comments]. Curr Anthropol 49(4):627Google Scholar
  4. Ballerini M, Cabibbo N, Candelier R, Cavagna A et al (2008) Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci USA 105(4):1232–1237CrossRefPubMedGoogle Scholar
  5. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512CrossRefPubMedGoogle Scholar
  6. Barrett L, Henzi P, Rendall D (2007) Social brains, simple minds: does social complexity really require cognitive complexity? Philos Trans R Soc B 362:561–575CrossRefGoogle Scholar
  7. Barrett L, Henzi SP, Lusseau D (2012) Taking sociality seriously: the structure of multi-dimensional social networks as a source of information for individuals. Philos Trans R Soc Lond Ser B Biol Sci 367(1599):2108–2118CrossRefGoogle Scholar
  8. Bergman TJ, Beehner JC (2015) Measuring social complexity. Anim Behav 103:203–209CrossRefGoogle Scholar
  9. Bialek W, Cavagna A, Giardina I, Mora T et al (2014) Social interactions dominate speed control in poising natural flocks near criticality. Proc Natl Acad Sci USA 111(20):7212–7217CrossRefPubMedGoogle Scholar
  10. Bollobás B, Riordan O (2006) Percolation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  11. Bonabeau E, Theraulaz G, Deneubourg J-L, Aron S, Camazine S (1997) Self-organization in social insects. Trends Ecol Evol 12(5):188–193CrossRefPubMedGoogle Scholar
  12. Bonnell TR, Clarke PM, Henzi SP, Barrett L (2017) Individual-level movement bias leads to the formation of higher-order social structure in a mobile group of baboons. PeerJ Preprints 5:e2808v1Google Scholar
  13. Brent LJ (2015) Friends of friends: are indirect connections in social networks important to animal behaviour? Anim Behav 103:211–222CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brent LJN, Franks DW, Foster EA, Balcomb KC, Cant MA, Croft DP (2015) Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr Biol 25:746–750CrossRefPubMedGoogle Scholar
  15. Camley BA, Zimmermann J, Levine H, Rappel W-J (2016) Emergent collective chemotaxis without single-cell gradient sensing. Phys Rev Lett 116:098101CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, Viale M (2010) Scale-free correlations in starling flocks. Proc Natl Acad Sci USA 107(26):11865–11870CrossRefPubMedGoogle Scholar
  17. Cheney DL, Seyfarth RM (1990) How monkeys see the world: inside the mind of another species. University of Chicago Press, ChicagoGoogle Scholar
  18. Costa LDF, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56(1):167–242CrossRefGoogle Scholar
  19. Couzin ID, Krause J, James R, Ruxtony GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218:1–11CrossRefPubMedGoogle Scholar
  20. Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433:513–516CrossRefPubMedGoogle Scholar
  21. Deneubourg JL, Goss S (1989) Collective patterns and decision-making. Ethol Ecol Evol 1:295–311CrossRefGoogle Scholar
  22. Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180CrossRefGoogle Scholar
  23. Dostie MJ, Lusseau D, Bonnell T, Clarke PMR, Chaplin G, Kienzle S, Barrett L, Henzi SP (2016) Proof of principle: the adaptive geometry of social foragers. Anim Behav 119:173–178CrossRefGoogle Scholar
  24. Dunbar RIM (1988) Primate social systems. Chapman & Hall, London, UKCrossRefGoogle Scholar
  25. Flack JC (2012) Multiple time-scales and the developmental dynamics of social systems. Philos Trans R Soc B 367:1802–1810CrossRefGoogle Scholar
  26. Flack JC, Girvan M, de Waal FBM, Krakauer DC (2006) Policing stabilizes construction of social niches in primates. Nature 439:426–429CrossRefPubMedGoogle Scholar
  27. Gallese V, Goldman A (1998) Mirror neurons and the simulation theory of mind-reading. Trends Cogn Sci 2:493–501CrossRefPubMedGoogle Scholar
  28. Gao J, Barzel B, Barabási AL (2016) Universal resilience patterns in complex networks. Nature 530:307–312CrossRefPubMedGoogle Scholar
  29. Getz WM, Saltz D (2008) A framework for generating and analyzing movement paths on ecological landscapes. Proc Natl Acad Sci USA 105(49):19066–19071CrossRefPubMedGoogle Scholar
  30. Ginelli F, Peruani F, Pillot M-H, Chaté H, Theraulaz T, Bon R (2015) Intermittent collective dynamics emerge from conflicting imperatives in sheep herds. Proc Natl Acad Sci USA 112:12729–12734CrossRefPubMedGoogle Scholar
  31. Hemelrijk CK (1999) An individual-orientated model of the emergence of despotic and egalitarian societies. Proc R Soc B Biol Sci 266(1417):361–369CrossRefGoogle Scholar
  32. Hemelrijk CK (2002) Understanding social behaviour with the help of complexity science (invited article). Ethology 108(8):655–671CrossRefGoogle Scholar
  33. Hemelrijk CK (2013) Simulating complexity of animal social behaviour. In: Edmonds B, Meyer R (eds) Simulating social complexity: understanding complex systems. Springer-Verlag, Berlin, pp 581–615CrossRefGoogle Scholar
  34. Hogeweg P, Hesper B (1983) The ontogeny of the interaction structure in bumble bee colonies: a MIRROR model. Behav Ecol Sociobiol 12:271–283CrossRefGoogle Scholar
  35. Humphrey N (1976) The social function of intellect. In: Bateson PPG, Hinde RA (eds) Growing points in ethology. Cambridge University Press, Cambridge, MA, pp 303–317Google Scholar
  36. Jolly A (1966) Lemur social behaviour and primate intelligence. Science 153:501–506CrossRefPubMedGoogle Scholar
  37. Kanngiesser P, Sueur C, Riedl K, Grossmann J, Call J (2011) Grooming network cohesion and the role of individuals in a captive Chimpanzee group. Am J Primatol 73:758–767CrossRefPubMedGoogle Scholar
  38. King AJ, Sueur C, Huchard E, Cowlishaw G (2011) A rule-of-thumb based on social affiliation explains collective movements in desert baboons. Anim Behav 82:1337–1345CrossRefGoogle Scholar
  39. Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys Rev Lett 85:4629–4632CrossRefPubMedGoogle Scholar
  40. Lusseau D, Newman MEJ (2004) Identifying the role that animals play in their social networks. Proc R Soc Lond B 271:S477–S481CrossRefGoogle Scholar
  41. Marcoux M, Lusseau D (2013) Network modularity promotes cooperation. J Theor Biol 324:103–108CrossRefPubMedGoogle Scholar
  42. Marsili M, Vega-Redondo F, Frantisek Slanina F (2004) The rise and fall of a networked society: a formal model. Proc Natl Acad Sci USA 101(6):1439–1442CrossRefPubMedGoogle Scholar
  43. Mason WA, Jones A, Goldstone RL (2008) Propagation of innovations in networked groups. J Exp Psychol 137(3):422–433CrossRefGoogle Scholar
  44. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827CrossRefPubMedGoogle Scholar
  45. Mitani JC, Grether GF, Rodman PS, Priatna D (1991) Association among wild orang-utans: sociality, passive aggregations or chance? Anim Behav 42:33–46CrossRefGoogle Scholar
  46. Mokross K, Ryder TB, Correa Cortes M, Wolfe JD, Stouffer PC (2014) Decay of interspecific avian flock networks along a disturbance gradient in Amazonia. Proc R Soc B 281:20132599CrossRefPubMedGoogle Scholar
  47. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256CrossRefGoogle Scholar
  48. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8582CrossRefPubMedGoogle Scholar
  49. Newman MEJ, Park J (2003) Why social networks are different from other types of networks. Phys Rev E 68:036122CrossRefGoogle Scholar
  50. Nowak MA, Sigmund K (1998) Evolution of indirect reciprocity by image scoring. Nature 393:573–577CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A (2015) Epidemic processes in complex networks. Rev Mod Phys 87:925–979CrossRefGoogle Scholar
  52. Pinter-Wollman N, Hobson EA, Smith JE, Edelman AJ et al (2014) The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behav Ecol 25(2):242–255CrossRefGoogle Scholar
  53. Ramos-Fernandez G, Boyer D, Gomez VP (2006) A complex social structure with fission-fusion properties can emerge from a simple foraging model. Behav Ecol Sociobiol 60:536–549CrossRefGoogle Scholar
  54. Santos FC, Pacheco JM (2005) Scale-free networks provide a unifying framework for the emergence of cooperation. Phys Rev Lett 95:098104CrossRefPubMedGoogle Scholar
  55. Silk JB, Alberts SC, Altmann J (2004) Patterns of coalition formation by adult female baboons in Amboseli, Kenya. Anim Behav 67:573–582CrossRefGoogle Scholar
  56. Smith JE, Van Horn RC, Powning KS, Cole AR, Graham KE, Memenis SK, Holekamp KE (2010) Evolutionary forces favoring intragroup coalitions among spotted hyenas and other animals. Behav Ecol 21:284–303CrossRefGoogle Scholar
  57. Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot MC (2015) Shared decision-making drives collective movement in wild baboons. Science 348:1358–1361CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sugardjito J, Te Boekhorst IJA, Van Hooff JARAM (1987) Ecological constraints on the grouping of wild orang-utans (Pongo pygmaeus) in the Gunung Leuser National Park, Sumatra, Indonesia. Int J Primatol 8:17–41CrossRefGoogle Scholar
  59. te Boekhorst IJ, Hogeweg P (1994) Effects of tree size on travelband formation in orang-utans: data analysis suggested by a model study. In: Brooks R, Maes P (eds) Artificial life IV. MIT Press, Cambridge, pp 119–129Google Scholar
  60. Vicsek T, Czirok A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226–1229CrossRefPubMedGoogle Scholar
  61. Voelkl B, Kasper C (2009) Social structure of primate interaction networks facilitates the emergence of cooperation. Biol Lett 5(4):462–464CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wilson WG, Richards SA (2000) Consuming and grouping: resource-mediated aggregation. Ecol Lett 3:175–180CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  2. 2.Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  3. 3.Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad OaxacaInstituto Politécnico NacionalOaxacaMéxico

Personalised recommendations