Advertisement

A Comparison of the Socio-communicative Behavior in Chimpanzees and Bonobos

  • Jared P. Taglialatela
  • Scott C. Milne
  • Robert E. Evans
Chapter
Part of the Interdisciplinary Evolution Research book series (IDER)

Abstract

Studying the similarities and differences in socio-communicative behavior between chimpanzees and bonobos is critical to increasing our understanding of the evolution of human sociality and communication. Both species rely heavily on the use of vocalizations during communicative interactions, although the form and function of these signals may vary between the two ape species. For example, bonobo vocalizations seem to be structurally more complex than those produced by chimpanzees, and calls seem to be directed to individuals not in immediate physical proximity. Both species, however, make use of communicative signals from different modalities concurrently, particularly vocalizations and manual gestures. However, this multimodal communication is more commonly observed in chimpanzees when compared to bonobos, who more frequently use vocalizations exclusively, without signals from additional modalities. In addition, there are a number of marked differences in social characteristics between the two species. Though both species exhibit fission–fusion behavior, chimpanzees do so more often, potentially as a result of their habitat profile and foraging strategies. Differences also exist in terms of dominance and aggression. Chimpanzees live in largely patriarchal societies with strong male–male bonds, whereas bonobos tend to be matriarchal with strong female–female bonds. These differences in communicative and social characteristics are thought to be linked to the ecology of the respective habitats of the two apes and their strategies for resource exploitation. In all likelihood, similarities in feeding ecology played a crucial role in selecting for the advanced cognitive abilities of both species—e.g., producing meaningful communicative signals, regulating competition and group cohesion, and making and utilizing tools to aid in foraging. Similarly, differences in their respective habitats may have led to selection for characteristics resulting in the behavioral differences observed today between the two species. Therefore, a clearer understanding of the similarities and differences between the two species most closely related to humans will provide valuable information into our own evolution by elucidating those characteristics shared among humans and our ape ancestors and those derived in the hominin lineage.

Keywords

Chimpanzee Bonobo Language evolution Social behavior Primate communication 

References

  1. Anestis SF, Webster TH, Kamilar JM, Fontenot MB, Watts DP, Bradley BJ (2014) AVPR1A variation in chimpanzees (Pan troglodytes): population differences and association with behavioral style. Int J Primatol 35(1):305–324CrossRefGoogle Scholar
  2. Becquet C, Patterson N, Stone AC, Przeworski M, Reich D (2007) Genetic structure of chimpanzee populations. PLoS Genet 3(4):e66.  https://doi.org/10.1371/journal.pgen.0030066 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bermejo M, Omedes A (1999) Preliminary vocal repertoire and vocal communication of wild bonobos (Pan paniscus) at Lilungu (Democratic Republic of Congo). Folia Primatol 70(6):328–357CrossRefPubMedGoogle Scholar
  4. Boesch C (1994) Cooperative hunting in wild chimpanzees. Anim Behav 48(3):653–667CrossRefGoogle Scholar
  5. Boesch C, Boesch H (1989) Hunting behavior of wild chimpanzees in the Tai National Park. Am J Phys Anthropol 78:547–573CrossRefPubMedGoogle Scholar
  6. Call J, Hare B, Carpenter M, Tomasello M (2004) ‘Unwilling’ versus ‘unable’: chimpanzees’ understanding of human intentional action. Dev Sci 7(4):488–498CrossRefPubMedGoogle Scholar
  7. Clay Z, Zuberbuhler K (2009) Food-associated calling sequences in bonobos Anim Behav.  https://doi.org/10.1016/j.anbehav.2009.02.016 CrossRefGoogle Scholar
  8. de Waal FBM (1988) The communicative repertoire of captive bonobos (Pan paniscus), compared to that of chimpanzees. Behaviour 106(3):183–251CrossRefGoogle Scholar
  9. Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin and the neurogenetics of sociality. Science 322:900–904CrossRefGoogle Scholar
  10. Donaldson ZR, Bai Y, Kondrashov FA, Stoinski TL, Hammock EAD, Young LJ (2008) Evolution of a behavior-linked microsatellite-containing element of the 5′ flanking region of the primate avpr1a gene. BMC Evol Biol 8:180–188CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fedurek P, Slocombe KE (2011) Primate vocal communication: a useful tool for understanding human speech and language evolution? Hum Biol 83(2):153–173CrossRefPubMedGoogle Scholar
  12. Garai C, Furuichi T, Kawamoto Y, Ryu H, Inoue-Murayama M (2014) Androgen receptor and monoamine oxidase polymorphism in wild bonobos. Meta Gene 2:831–843CrossRefPubMedPubMedCentralGoogle Scholar
  13. Goodall J (1986) The chimpanzees of Gombe: patterns of behavior. Harvard University Press, CambridgeGoogle Scholar
  14. Hammock EA, Young LY (2004) Functional microsatellite polymorphisms associated with divergent social structure in vole species. Mol Biol Evol 21:1057–1063CrossRefPubMedGoogle Scholar
  15. Hammock EAD, Young LJ (2005) Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 308:1630–1634CrossRefGoogle Scholar
  16. Hammock EA, Young LJ (2007) Neuropeptide systems and social behavior: noncoding repeats as a genetic mechanism for rapid evolution of social behavior. Evol Nerv Syst 3:361–371Google Scholar
  17. Hammock EA, Lim MM, Nair HP, Young LJ (2005) Assocation of vasopressin 1a receptor levels with a regulatory microsattelite and behavior. Genes Brain Behav 4(5):289–301CrossRefPubMedGoogle Scholar
  18. Hare B, Wobber T, Wrangham R (2012) The self-domestication hypothesis: bonobo psychology evolved due to selection against male aggression. Anim Behav 83:573–585CrossRefGoogle Scholar
  19. Hashimoto C, Tashiro Y, Kimura D, Enomoto T, Ingmanson EJ, Idani G, Furuichi T (1998) Habitat use and ranging of wild bonobos (Pan paniscus) at Wamba. Int J Primatol 19:1045–1060CrossRefGoogle Scholar
  20. Head JS, Boesch C, Makaga L, Robbins MM (2011) Sympatric chimpanzees (Pan troglodytes troglodytes) and gorillas (Gorilla gorilla gorilla) in Loango National Park, Gabon: dietary composition, seasonality, and intersite comparisons. Int J Primatol 32(3):755–775CrossRefGoogle Scholar
  21. Hey J (2010) The divergence of chimpanzee species and subspecies as revealed in multi population isolation-with-migration analyses. Mol Biol Evol 27:921–933CrossRefPubMedGoogle Scholar
  22. Hohmann G, Fruth B (1994) Structure and use of distance calls in wild bonobos (Pan paniscus). Int J Primatol 15(5):767–782CrossRefGoogle Scholar
  23. Hopkins WD, Taglialatela JP, Leavens DA (2007) Chimpanzees differentially produce novel vocalizations to capture the attention of a human. Anim Behav 73:281–286CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hopkins WD, Donaldson ZR, Young LY (2012) A polymorphic indel containing the RS3 microsatellitein the 5′ flanking region of the vasopressin V1a receptor gene is associated with chimpanzee (Pan troglodytes) personality. Genes Brain Behav 11:552–558CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hostetter AB, Cantero M, Hopkins WD (2001) Differential use of vocal and gestural communication by chimpanzees (Pan troglodytes) in response to the attentional status of a human (Homo sapiens). J Comp Psychol 115(4):337–343CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kimura D (1973) Manual activity during speaking— I. Right-handers. Neuropsychologia 11:45–50CrossRefPubMedGoogle Scholar
  27. King DG, Soller M, Kashi Y (1997) Evolutionary tuning knobs. Endeavour 21(1):36–40CrossRefGoogle Scholar
  28. Knafo A, Israel S, Darvasi A, Bachner-Melman R, Uzefovsky F, Cohen L, Feldman E, Lerer E, Laiba E, Raz Y, Nemanov L, Gritsenko I, Dina C, Agam G, Dean B, Bornstein G, Ebstein RP (2008) Individual differences in allocation of funds in the dictator game and post-mortem hippocampal mRNA levels are correlated with length of the arginine vasopressin 1 a receptor (AVPR1A) RS3 promotor region repeat. Genes Brain Behav 7:266–275CrossRefPubMedGoogle Scholar
  29. Krause MA, Fouts RA (1997) Chimpanzee (Pan troglodytes) pointing: hand shapes, accuracy, and the role of eye gaze. J Comp Psychol 111:330–336CrossRefPubMedGoogle Scholar
  30. Leavens DA, Hopkins WD (1998) Intentional communication by chimpanzee (Pan troglodytes): cross-sectional study of the use of referential gestures. Dev Psychol 34:813–822CrossRefPubMedPubMedCentralGoogle Scholar
  31. Leavens DA, Hopkins WD, Bard KA (1996) Indexical and referential pointing in chimpanzees (Pan troglodytes). J Comp Psychol 110(4):346–353CrossRefPubMedPubMedCentralGoogle Scholar
  32. Leavens DA, Hostetter AB, Westley MJ, Hopkins WD (2004) Tactical use of unimodal and bimodal communication by chimpanzees, Pan troglodytes. Anim Behav 67:467–476CrossRefGoogle Scholar
  33. Leavens DA, Russell JL, Hopkins WD (2005) Intentionality as measured in the persistence and elaboration of communication by chimpanzees (Pan troglodytes). Child Dev 76(1):291–306CrossRefPubMedPubMedCentralGoogle Scholar
  34. Malenky RK, Wrangham RW (1994) A quantitative comparison of terrestrial herbaceous food consumption by Pan paniscus in the Lomako forest, Zaire, and Pan troglodytes in the Kibale forest, Uganda. Am J Primatol 32:1–12CrossRefGoogle Scholar
  35. Malenky RK, Kuroda S, Vineberg EO, Wrangham RW (1994) The significance of terrestrial herbaceous foods for bonobos, chimpanzees and gorillas. In: Wrangham RW, McGrew WC, de Waal FB, Heltne PG (eds) Chimpanzee cultures. Harvard University Press, Cambridge, pp 59–75Google Scholar
  36. McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264:746–748.  https://doi.org/10.1038/264746a0 CrossRefGoogle Scholar
  37. McNeill D (1992) Hand and mind: what gestures reveal about thought. University of Chicago Press, ChicagoGoogle Scholar
  38. Meyer-Lindenberg A, Kolachana B, Gold B, Olsh A, Nicodemus KK, Mattay V, Dean M, Weinberger DR (2009) Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Mol Psychiatry 14(10):968–975CrossRefPubMedGoogle Scholar
  39. Milne SC (2015) An empirical and theoretical comparison of the socio-ecological behaviors of captive chimpanzees (Pan troglodytes), bonobos (Pan paniscus), and western lowland gorillas (Gorilla gorilla): social tolerance and behavioral responses to changes in food quality and distribution. Master of Science in Integrative Biology Theses. Paper 8Google Scholar
  40. Mitani JC (1996) Comparative field studies of African ape vocal behavior. In: Great ape societies. Cambridge University Press, Cambridge, pp 241–254CrossRefGoogle Scholar
  41. Moore B (2014) Differences in the communicative behavior and neurobiology of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) Master of Science in Integrative Biology Theses. Paper 3Google Scholar
  42. Parish AR, de Waal F, Haig D (2000) The other “closest living relative”: how bonobos (Pan paniscus) challenge traditional assumptions about females, dominance, intra-and intersexual interactions, and hominid evolution. Ann NY Acad Sci 907(1):97–113CrossRefPubMedGoogle Scholar
  43. Patterson N, Richter DJ, Guerre S, Lander ES, Reich D (2006) Genetic evidence for complex specialization of humans and chimpanzees. Nature 441(7097):1103–1108CrossRefPubMedGoogle Scholar
  44. Pollick AS, de Waal FMB (2007) Ape gestures and language evolution. Proc Natl Acad Sci 104(19):8184–8189CrossRefPubMedGoogle Scholar
  45. Poss SR, Kuhar C, Stoinski TS, Hopkins WD (2006) Differential use of attentional and visual communicative signaling by orangutans (Pongo pygmaeus) and gorillas (Gorilla gorilla) in response to the attentional status of a human. Am J Primatol 68:978–992CrossRefPubMedPubMedCentralGoogle Scholar
  46. Prüfer K, Munch K, Hellmann I, Akagi K, Miller JR, Walenz B, Koren S, Sutton G, Kodira C, Winer R, Knight JR, Mullikin JC, Meader SJ, Ponting CP, Lunter G, Higashino S, Hobolth A, Dutheil J, Karakoc E, Alkan C, Sajjadian S, Catacchio CR, Ventura M, Marques-Bonet T, Eichler EE, Andre C, Atencia R, Mugisha L, Junhold J, Patterson N, Siebauer M, Good JM, Fischer A, Ptak SE, Lachmann M, Symer DE, Mailund T, Schierup MH, Andres AM, Kelso J, Paabo S (2012) The bonobo genome compared with the chimpanzee and human genomes. Nature 486(7404):527–531CrossRefPubMedPubMedCentralGoogle Scholar
  47. Russell JL, Mcintyre J, Hopkins WD, Taglialatela JP (2013) Vocal learning of a communicative signal in captive chimpanzees, Pan troglodytes. Brain Lang 127:520–525CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sakura O (1994) Factors affecting party size and composition of chimpanzees (Pan troglodytes verus) Bossou, Guinea. Int J Primatol 15:167–183CrossRefGoogle Scholar
  49. Sibley CG, Ahlquist JE (1984) The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. J Mol Evol 20:2–15CrossRefPubMedGoogle Scholar
  50. Slocombe KE, Waller BM, Liebal K (2011) The language void: the need for multimodality in primate research. Anim Behav 81:919–924CrossRefGoogle Scholar
  51. Staes N, Stevens JMG, Helsen P, Hillyer M, Korody M, Eens M (2014) Oxytocin and vasopressin receptor gene variation as a proximate base for Inter- and intraspecific behavioral bifferences in bonobos and chimpanzees. PLoS One 9(11):e113364CrossRefPubMedPubMedCentralGoogle Scholar
  52. Staes N, Koski SE, Helsen P, Fransen E, Eens M, Stevens JMG (2015) Chimpanzee sociability is associated with vasopressin (Avpr1a) but not oxytocin receptor gene (OXTR) variation. Horm Behav 75:84–90CrossRefPubMedGoogle Scholar
  53. Stanford CB, Nkurunungi JB (2003) Behavioral ecology of sympatric chimpanzees and gorillas in Bwindi Impenetrable National Park, Uganda: Diet. Int J Primatol 24(4):901–918CrossRefGoogle Scholar
  54. Taglialatela JP, Russel JL, Schaeffer JA, Hopkins WD (2008) Communicative signaling activates “Broca’s” homologue in chimpanzees. Curr Biol 18:343–348CrossRefPubMedPubMedCentralGoogle Scholar
  55. Taglialatela JP, Russell JL, Schaeffer JA, Hopkins WD (2011) Chimpanzee vocal signaling points to a multimodal origin of human language. PLoS One 6(4):e18852.  https://doi.org/10.1371/journal.pone.0018852 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Taglialatela JP, Reamer L, Schapiro SJ, Hopkins WD (2012) Social learning of a communicative signal in captive chimpanzees. Biol Lett 8:498–501CrossRefPubMedPubMedCentralGoogle Scholar
  57. Taglialatela JP, Russell JL, Pope SM, Morton T, Bogart S, Reamer LA, Schapiro SJ, Hopkins WD (2015) Multimodal communication in chimpanzees. Am J Primatol 77(11):1143–1148CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tomasello M, Call J, Nagell K, Olguin R, Carpenter M (1994) The learning and use of gestural signals by young chimpanzees: a trans-generational study. Primates 35:137–154CrossRefGoogle Scholar
  59. Tutin CEG (1996) Ranging and social structure of lowland gorillas in the Lopé Reserve, Gabon. In: WC MG, Marchant LF (eds) Great ape societies. Cambridge University Press, Cambridge, pp 58–70CrossRefGoogle Scholar
  60. Tutin CEG, Fernandez M, Elizabeth Rogers M, Williamson EA, McGrew WC, Altmann SA, Southgate DAT (1991) Foraging profiles of sympatric lowland gorillas and chimpanzees in the Lope Reserve, Gabon. Philos Trans R Soc Lond B 334(1270):179–186CrossRefGoogle Scholar
  61. Walum H, Westberg L, Henningsson S, Neiderhiser JM, Reiss D, Igl W, Ganiban JM, Spotts EL, Pedersen NL, Eriksson E, Lichenstein P (2008) Genetic variation in the vasopressin receptor 1a gene (avpr1a) associates with pair bonding behavior in humans. Proc Natl Acad Sci 105(37):14153–14156CrossRefPubMedGoogle Scholar
  62. Watts DP, Potts KB, Lwanga JS, Mitani JC (2012) Diet of chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda, 1. Diet composition and diversity. Am J Primatol 74:114–129CrossRefPubMedGoogle Scholar
  63. White FJ (1996) Comparative socio-ecology of Pan paniscus. In: McGrew WC, Marchant LF (eds) Great ape societies. Cambridge University Press, Cambridge, pp 29–41CrossRefGoogle Scholar
  64. White FJ (1998) Seasonality and socioecology: the importance of variation in fruit abundance to bonobo sociality. Int J Primatol 19:1013–1027CrossRefGoogle Scholar
  65. White FJ, Chapman CA (1994) Contrasting chimpanzees and bonobos:nearest neighbor distances and choices. Folia Primatol 63(4):181–191CrossRefPubMedGoogle Scholar
  66. White FJ, Wrangham RW (1988) Feeding competition and patch size in the chimpanzee species Pan paniscus and Pan troglodytes. Behaviour 105(1/2):148–164CrossRefGoogle Scholar
  67. Wobber V, Hare B, Maboto J, Lipson S, Wrangham RW, Ellison PT (2010) Differential changes in steroid hormones before competition in bonobos and chimpanzees. Proc Natl Acad Sci 107(28):12457–12462CrossRefPubMedGoogle Scholar
  68. Wrangham RW (1986) Ecology and social relationships in two species of chimpanzees. In: Rubenstein DI, Wrangham RW (eds) Ecological aspects of social evolution: birds and mammals. Princeton University Press, Princeton, pp 352–378Google Scholar
  69. Wrangham RW, Chapman CA, Clark-Arcadi AP, Isabirye-Basuta G (1996) Social ecology of Kanyawara chimpanzees: implications for understanding the costs of great ape groups. In: WC MG, Marchant LF (eds) Great ape societies. Cambridge University Press, Cambridge, pp 45–57CrossRefGoogle Scholar
  70. Yamagiwa J (1999) Socioecological factors influencing population structure of gorillas and chimpanzees. Primates 40(1):87–104CrossRefPubMedGoogle Scholar
  71. Yamagiwa J, Basabose AK, Kahekwa J, Bikaba D, Ando C, Matsubara M, Iwasaki N, Sprague DS (2012) Long-term research on Grauer’s gorillas in Kahuzi-Biega National Park, DRC: life history, foraging strategies, and ecological differentiation from sympatric chimpanzees. In: Long-term field studies of primates. Springer, Heidelberg, pp 385–412CrossRefGoogle Scholar
  72. Yamagiwa J, Maruhashi T, Yumoto T, Mwanza N (1996) Dietary and ranging overlap in sympatric gorillas and chimpanzees in Kahuzi-Biega National Park, Zaire. In: WC MG, Marchant LF (eds) Great ape societies. Cambridge University Press, Cambridge, pp 82–98CrossRefGoogle Scholar
  73. Yamakoshi G (2004) Food seasonality and socioecology in Pan: are West African chimpanzees another bonobo? Afr Stud Monogr 25(1):45–60Google Scholar
  74. Zihlman AL, Cronin JE, Cramer DL, Sarich VM (1978) Pygmy chimpanzees as a possible prototype for the common ancestor of humans, chimpanzees, and gorillas. Nature 275(5682):744–746CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jared P. Taglialatela
    • 1
    • 2
  • Scott C. Milne
    • 1
  • Robert E. Evans
    • 1
  1. 1.Department of Ecology, Evolution, and Organismal BiologyKennesaw State UniversityKennesawUSA
  2. 2.Ape Cognition and Conservation InitiativeDes MoinesUSA

Personalised recommendations