Visuospatial Integration: Paleoanthropological and Archaeological Perspectives

  • Emiliano BrunerEmail author
  • Enza Spinapolice
  • Ariane Burke
  • Karenleigh A. Overmann
Part of the Interdisciplinary Evolution Research book series (IDER)


The visuospatial system integrates inner and outer functional processes, organizing spatial, temporal, and social interactions between the brain, body, and environment. These processes involve sensorimotor networks like the eye–hand circuit, which is especially important to primates, given their reliance on vision and touch as primary sensory modalities and the use of the hands in social and environmental interactions. At the same time, visuospatial cognition is intimately connected with memory, self-awareness, and simulation capacity. In the present article, we review issues associated with investigating visuospatial integration in extinct human groups through the use of anatomical and behavioral data gleaned from the paleontological and archaeological records. In modern humans, paleoneurological analyses have demonstrated noticeable and unique morphological changes in the parietal cortex, a region crucial to visuospatial management. Archaeological data provides information on hand–tool interaction, the spatial behavior of past populations, and their interaction with the environment (e.g., in domains like landscape use and navigation, the spatial relations implicit in social networks, etc.). Visuospatial integration may represent a critical bridge between extended cognition, self-awareness, and social perception. As such, visuospatial functions are relevant to the hypothesis that human evolution is characterized by changes in brain–body–environment interactions and relations, which enhance integration between internal and external cognitive components through neural plasticity and the development of a specialized embodiment capacity. We therefore advocate the investigation of visuospatial functions in past populations through the paleoneurological study of anatomical elements and archaeological analysis of visuospatial behaviors.


Cognitive archaeology Embodiment Extended cognition Land use Paleoneurology Parietal lobes Spatial cognition Toolmaking 



We are grateful to the many friends, colleagues, and students who helped us develop the topics introduced in this paper: Fred Coolidge, Tom Wynn, Lambros Malafouris, Duilio Garofoli, Eiluned Pearce, Atsushi Iriki, Jim Rilling, Annapaola Fedato, María Silva Gago, Sofia Pereira Pedro, Roberto Colom, Manuel Martin-Loeches, Ralph Holloway, Marina Lozano, Joseba Rios Garaizar, and Sileshi Semaw. EB is supported by the Spanish government (MINECO CGL2015-65387-C3-3-P). EES is supported by a SIR (RBSI142SRD) grant from the MIUR (Italian Ministry of University and Research).


  1. Allen GL (1999) Spatial abilities, cognitive maps, and wayfinding: basis for individual differences in spatial cognition and behavior. In: Golledge RG (ed) Wayfinding behavior. Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  2. Almécija S, Wallace IJ, Judex S, Alba DM, Moyà-Solà S (2015) Comment on ape human-like hand use in Australopithecus africanus. Science 348:1101–1101CrossRefPubMedGoogle Scholar
  3. Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Annu Rev Neurosci 25:189–220CrossRefPubMedGoogle Scholar
  4. Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330CrossRefPubMedGoogle Scholar
  5. Ansari D (2008) Effects of development and enculturation on number representation in the brain. Nat Rev Neurosci 9:278–291CrossRefPubMedGoogle Scholar
  6. Baldwin MJ (1896) A new factor in evolution. Am Nat 30:441–451CrossRefGoogle Scholar
  7. Barks SK, Parr LA, Rillin JL (2015) The default mode network in chimpanzees (Pan troglodytes) is similar to that of humans. Cereb Cortex 25:538–544CrossRefPubMedGoogle Scholar
  8. Bastir M, Rosas A, Lieberman DE, O’Higgins P (2008) Middle cranial fossa and the origin of modern humans. Anat Rec 291:130–140CrossRefGoogle Scholar
  9. Battaglia-Mayer A, Archambault PS, Caminiti R (2006) The cortical network for eye–hand coordination and its relevance to understanding motor disorders of parietal patients. Neuropsychologia 44:2607–2620CrossRefPubMedGoogle Scholar
  10. Beer RD (2003) The dynamics of active categorical perception in an evolved model agent. Adapt Behav 11:209–243CrossRefGoogle Scholar
  11. Binkofski F, Buccino G (2004) Motor functions of the Broca’s region. Brain Lang 89:362–369CrossRefPubMedGoogle Scholar
  12. Bosco A, Longoni AM, Vecchi T (2004) Gender effects in spatial orientation: cognitive profiles and mental strategies. Appl Cogn Psychol 18:519–532CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bril B, Rein R, Nonaka T, Wenban-Smith F, Dietrich G (2010) The role of expertise in tool use: skill differences in functional action adaptations to task constraints. J Exp Psychol Hum Percept Perform 36:825–839CrossRefPubMedGoogle Scholar
  14. Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303CrossRefPubMedGoogle Scholar
  15. Bruner E (2010) Morphological differences in the parietal lobes within the human genus. Curr Anthropol 51:S77–S88CrossRefGoogle Scholar
  16. Bruner E, Iriki A (2016) Extending mind, visuospatial integration, and the evolution of the parietal lobes in the human genus. Quat Int 405:98–110CrossRefGoogle Scholar
  17. Bruner E, Jacobs HIL (2013) Alzheimer’s disease: the downside of a highly evolved parietal lobe? J Alzheimers Dis 35:227–240CrossRefPubMedGoogle Scholar
  18. Bruner E, Lozano M (2014) Extended mind and visuo-spatial integration: three hands for the Neandertal lineage. J Anthropol Sci 92:273–280PubMedPubMedCentralGoogle Scholar
  19. Bruner E, Lozano M (2015) Three hands: one year later. J Anthropol Sci 93:191–195Google Scholar
  20. Bruner E, Pearson O (2013) Neurocranial evolution in modern humans: the case of Jebel Irhoud 1. Anthropol Sci 121:31–41CrossRefGoogle Scholar
  21. Bruner E, Manzi G, Arsuaga JL (2003) Encephalization and allometric trajectories in the genus Homo: evidence from the Neandertal and modern lineages. Proc Natl Acad Sci U S A 100:15335–15340CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bruner E, Saracino B, Ricci F, Tafuri M, Passarello P, Manzi G (2004) Midsagittal cranial shape variation in the genus Homo by geometric morphometrics. Coll Anthropol 28:99–112Google Scholar
  23. Bruner E, de la Cuétara JM, Holloway R (2011) A bivariate approach to the variation of the parietal curvature in the genus Homo. Anat Rec 294:1548–1556CrossRefGoogle Scholar
  24. Bruner E, Rangel de Lázaro G, de la Cuétara JM, Martín-Loeches M, Colóm R, Jacobs HIL (2014a) Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals. J Anat 224:367–376CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bruner E, de la Cuétara JM, Masters M, Amano H, Ogihara N (2014b) Functional craniology and brain evolution: from paleontology to biomedicine. Front Neuroanat 8:1–19CrossRefGoogle Scholar
  26. Bruner E, Román FJ, de la Cuétara JM, Martín-Loeches M, Colóm R (2015) Cortical surface area and cortical thickness in the precuneus of adult humans. Neuroscience 286:345–352CrossRefPubMedGoogle Scholar
  27. Bruner E, Preuss T, Chen X, Rilling J (2017) Evidence for expansion of the precuneus in human evolution. Brain Struct Funct 222:1053–1060CrossRefPubMedGoogle Scholar
  28. Bruner E, Amano H, Pereira-Pedro S, Ogihara N (2018) The evolution of the parietal lobes in the genus homo. In: Bruner E, Ogihara N, Tanabe H (eds) Digital endocasts. Springer, Tokyo, pp 219–237CrossRefGoogle Scholar
  29. Bruner E, Lozano M, Lorenzo C (2016) Visuospatial integration and human evolution: the fossil evidence. J Anthropol Sci 94:81–97PubMedPubMedCentralGoogle Scholar
  30. Buccino G, Riggio L, Melli G, Binkofski F, Gallese V, Rizzolatti G (2005) Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study. Cogn Brain Res 24:355–363CrossRefGoogle Scholar
  31. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network. Ann N Y Acad Sci 1124:1–38CrossRefPubMedGoogle Scholar
  32. Burgess N (2006) Spatial memory: how egocentric and allocentric combine. Trends Cogn Sci 10:551–557CrossRefPubMedGoogle Scholar
  33. Burke A (2012) Spatial abilities, cognition and the pattern of Neanderthal and modern human dispersals. Quat Int 247:230–235CrossRefGoogle Scholar
  34. Burke A, Kandler A, Good D (2012) Women who know their place: sex-based differences in spatial abilities and their evolutionary significance. Hum Nat 23:133–148CrossRefPubMedGoogle Scholar
  35. Byrge L, Sporns O, Smith LB (2014) Developmental process emerges from extended brain–body–behavior networks. Trends Cogn Sci 18:395–403CrossRefPubMedPubMedCentralGoogle Scholar
  36. Bzdok D, Heeger A, Langner R, Laird AR, Fox PT, Palomero-Gallagher N, Vogt BA, Zilles K, Eickhoff SB (2015) Subspecialization in the human posterior medial cortex. NeuroImage 106:55–71CrossRefPubMedGoogle Scholar
  37. Caminiti R, Innocenti GM, Battaglia-Mayer A (2015) Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neurosci Biobehav Rev 56:73–96CrossRefPubMedGoogle Scholar
  38. Cantlon JF, Brannon EM, Carter EJ, Pelphrey KA (2006) Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biol 4:844–854CrossRefGoogle Scholar
  39. Cashdan EA (1985) Coping with risk: reciprocity among the Basarwa of Northern Botswana. Man 20(3):454–474CrossRefGoogle Scholar
  40. Caspers S, Eickhoff SB, Rick T, von Kapri A, Kuhlen T, Huang R, Shah NJ, Zilles K (2011) Probabilistic fiber tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. NeuroImage 58:362–380CrossRefPubMedGoogle Scholar
  41. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583CrossRefPubMedPubMedCentralGoogle Scholar
  42. Chen CH, Gutierrez ED, Thompson W, Panizzon MS, Jernigan TL, Eyler LT, Fennema-Notestine C, Jak AJ, Neale MC, Franz CE, Lyons MJ, Grant MD, Fischl B, Seidman LJ, Tsuang MT, Kremen WS, Dale AM (2012) Hierarchical genetic organization of human cortical surface area. Science 335:1634–1636CrossRefPubMedPubMedCentralGoogle Scholar
  43. Churchill SE (2001) Hand morphology, manipulation, and tool use in Neandertals and early modern humans of the Near East. Proc Natl Acad Sci U S A 98:2953–2955CrossRefPubMedPubMedCentralGoogle Scholar
  44. Clark JGD (1969) World prehistory: a new outline. Cambridge University Press, CambridgeGoogle Scholar
  45. Clark A (1997) Being there: putting brain, body, and world together again. MIT Press, CambridgeGoogle Scholar
  46. Clark A (2008) Supersizing the mind: embodiment, action, and cognitive extension. Oxford University Press, New YorkCrossRefGoogle Scholar
  47. Clark A, Chalmers DJ (1998) The extended mind. Analysis 58:7–19CrossRefGoogle Scholar
  48. Comrie B (2013) Numeral bases. In: Dryer MS, Haspelmath M (eds) The world atlas of language structures online. Max Planck Institute for Evolutionary Anthropology, LeipzigGoogle Scholar
  49. Coolidge FL, Wynn T (2005) Working memory, its executive functions, and the emergence of modern thinking. Camb Archaeol J 15:5–26CrossRefGoogle Scholar
  50. Coolidge FL, Wynn T (2009) The rise of Homo sapiens: the evolution of modern thinking. Wiley, OxfordCrossRefGoogle Scholar
  51. Coolidge FL, Wynn T, Overmann KA, Hicks JM (2015) Cognitive archaeology and the cognitive sciences. In: Bruner E (ed) Human paleoneurology. Springer, ChamGoogle Scholar
  52. Corballis MC (1999) The gestural origins of language: human language may have evolved from manual gestures, which survive today as a ‘behavioral fossil’ coupled to speech. Am Sci 87:138–145CrossRefGoogle Scholar
  53. Crispo E (2007) The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution 61:2469–2479CrossRefPubMedGoogle Scholar
  54. d’Errico F, Henshilwood CS, Lawson G, Vanhaeren M, Tillier A-M, Soressi M, Bresson F, Maureille B, Nowell A, Lakarra J, Backwell L, Julien M (2003) Archaeological evidence for the emergence of language, symbolism, and music–an alternative multidisciplinary perspective. J World Prehist 17:1–70CrossRefGoogle Scholar
  55. d’Errico F, Henshilwood CS, Vanhaeren M, van Niekerk K (2005) Nassarius kraussianus shell beads from Blombos Cave: evidence for symbolic behaviour in the Middle Stone Age. J Hum Evol 48:3–24CrossRefPubMedGoogle Scholar
  56. Dart RA (1925) Australopithecus africanus: the man-ape of South Africa. Nature 115(2884):195–199CrossRefGoogle Scholar
  57. de Beaune SA, Coolidge FL, Wynn T (eds) (2009) Cognitive archaeology and human evolution. Cambridge University Press, CambridgeGoogle Scholar
  58. Depew DJ (2003) Baldwin and his many effects. In: Weber B, Depew DJ (eds) Evolution and learning: the Baldwin effect reconsidered. MIT Press, Cambridge, MAGoogle Scholar
  59. Dunbar RIM (1998) The social brain hypothesis. Evol Anthropol 6:178–190CrossRefGoogle Scholar
  60. Dunbar RIM (2008) Mind the gap: or why humans aren’t just great apes. Proc Br Acad 154:403–423Google Scholar
  61. Dunbar RIM (2010) The social role of touch in humans and primates: behavioural function and neurobiological mechanisms. Neurosci Biobehav Rev 34:260–268CrossRefPubMedGoogle Scholar
  62. Ebeling U, Steinmetz H (1995) Anatomy of the parietal lobe: mapping the individual pattern. Acta Neurochir 136:8–11CrossRefPubMedGoogle Scholar
  63. Eibl-Eibesfeldt I (1989) Human ethology. Aldine de Gruyter, Hawthorne, NYGoogle Scholar
  64. Etienne AS, Jeffery KA (2004) Path integration in mammals. Hippocampus 14:180–192CrossRefPubMedGoogle Scholar
  65. Feblot-Augustin J (1993) Mobility strategies in the late middle Palaeolithic of central Europe and Western Europe: elements of stability and variability. J Anthropol Archaeol 112:211–265CrossRefGoogle Scholar
  66. Feblot-Augustin J (1997) La Circulation des Matières Premières au Paléolithique. CNRS, LiègeGoogle Scholar
  67. Feix T, Romero J, Schmiedmayer HB, Dollar AM, Kragic D (2015) The GRASP taxonomy of human grasp types. IEEE Trans Hum Mach Syst 46:66–77CrossRefGoogle Scholar
  68. Feng J, Spence I, Pratt J (2007) Playing an action video game reduces gender differences in spatial cognition. Psychol Sci 18:850–855CrossRefPubMedGoogle Scholar
  69. Fletcher PC, Frith CD, Baker SC, Shallice T, Frackowiak RSJ, Dolan RJ (1995) The mind’s eye—precuneus activation in memory-related imagery. NeuroImage 2:195–200CrossRefPubMedGoogle Scholar
  70. Foley R (1987) Hominid species and stone-tool assemblages: how are they related? Antiquity 61:380–392CrossRefGoogle Scholar
  71. Foley R, Lahr MM (2003) On stony ground: lithic technology, human evolution, and the emergence of culture. Evol Anthropol 12:109–122CrossRefGoogle Scholar
  72. Foo P, Warren WH, Duchon A, Tarr MJ (2005) Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts. J Exp Psychol 31:195–215Google Scholar
  73. Freton M, Lemogne C, Bergouignan L, Delaveau P, Lehéricy S, Fossati P (2014) The eye of the self: precuneus volume and visual perspective during autobiographical memory retrieval. Brain Struct Funct 219:959–968CrossRefPubMedGoogle Scholar
  74. Gallagher S (2013) The enactive hand. In: Radman Z (ed) The hand, an organ of the mind: what the manual tells the mental. MIT Press, CambridgeGoogle Scholar
  75. Gamble C (1998) Palaeolithic society and the release from proximity: a network approach to intimate relations (human social evolution). World Archaeol 29:426–449CrossRefGoogle Scholar
  76. Gentilucci M, Corballis MC (2006) From manual gesture to speech: a gradual transition. Neurosci Biobehav Rev 30:949–960CrossRefPubMedGoogle Scholar
  77. Golledge RG (2003) Human wayfinding and cognitive maps. In: Rockman M, Steele J (eds) Colonization of unfamiliar landscapes: the archaeology of adaptation. Routledge, LondonGoogle Scholar
  78. Goodale MA, Meenan JP, Bülthoff HH, Nicolle DA, Murphy KJ, Racicot CI (1994) Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 4:604–610CrossRefPubMedGoogle Scholar
  79. Gould SJ, Vrba ES (1982) Exaptation: a missing term in the science of form. Paleobiology 8:4–15CrossRefGoogle Scholar
  80. Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207:3–17CrossRefPubMedPubMedCentralGoogle Scholar
  81. Gunz P, Neubauer S, Maureille B, Hublin J-J (2010) Brain development after birth differs between Neanderthals and modern humans. Curr Biol 20:R921–R922CrossRefPubMedGoogle Scholar
  82. Haggard P (2005) Conscious intention and motor cognition. Trends Cogn Sci 9:290–295CrossRefPubMedGoogle Scholar
  83. Haggard P, de Boer L (2014) Oral somatosensory awareness. Neurosci Biobehav Rev 47:469–484CrossRefPubMedGoogle Scholar
  84. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:1–15CrossRefGoogle Scholar
  85. Hatwell Y (2003) Introduction: touch and cognition. In: Hatwell Y, Streri A, Genatz E (eds) Touching for knowing: cognitive psychology of haptic manual perception. John Benjamins, AmsterdamCrossRefGoogle Scholar
  86. Hatwell Y, Streri A, Gentaz E (2003) Touching for knowing: cognitive psychology of haptic manual perception. John Benjamins, AmsterdamCrossRefGoogle Scholar
  87. Hecht EE, Gutman DA, Preuss TM, Sanchez MM, Parr LA, Rilling JK (2013) Process versus product in social learning: comparative diffusion tensor imaging of neural systems for action execution–observation matching in macaques, chimpanzees, and humans. Cereb Cortex 23:1014–1024CrossRefPubMedGoogle Scholar
  88. Helbig HB, Ernst MO (2008) Haptic perception in interaction with other senses. In: Grunwald M (ed) Human haptic perception: basics and applications. Birkhäuser, BaselGoogle Scholar
  89. Henshilwood CS, Marean C (2003) The origin of modern human behavior: critique of the models and their test implications. Curr Anthropol 44:627–651CrossRefPubMedGoogle Scholar
  90. Hihara S, Notoya T, Tanaka M, Ichinose S, Ojima H, Obayashi S, Fujii N, Iriki A (2006) Extension of corticocortical afferents into the anterior bank of the intraparietal sulcus by tool-use training in adult monkeys. Neuropsychologia 44:2636–2646CrossRefPubMedGoogle Scholar
  91. Hills TT, Todd PM, Lazer D, Redish AD, Couzin ID (2015) Exploration versus exploitation in space, mind, and society. Trends Cogn Sci 19:46–54CrossRefPubMedGoogle Scholar
  92. Holloway RL (1981) Exploring the dorsal surface of hominoid brain endocasts by stereoplotter and discriminant analysis. Philos Trans R Soc Lond Ser B Biol Sci 292:155–166CrossRefGoogle Scholar
  93. Hutchins E (1995) Cognition in the wild. MIT Press, Cambridge, MAGoogle Scholar
  94. Hutto DD, Myin E (2013) Radicalizing enactivism: basic minds without content. MIT Press, Cambridge, MAGoogle Scholar
  95. Ingber D (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97:163–179CrossRefPubMedPubMedCentralGoogle Scholar
  96. Iriki A, Taoka M (2012) Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions. Philos Trans R Soc Lond Ser B Biol Sci 367:10–23CrossRefGoogle Scholar
  97. Jirak D, Menz MM, Buccino G, Borghi AM, Binkofski F (2010) Grasping language—a short story on embodiment. Conscious Cogn 19:711–720CrossRefPubMedGoogle Scholar
  98. Jung RE, Haier RJ (2007) The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30:135–187CrossRefPubMedGoogle Scholar
  99. Kappassov Z, Corrales JA, Perdereau V (2015) Tactile sensing in dexterous robots hands. Robot Auton Syst 74:195–220CrossRefGoogle Scholar
  100. Kelly RL (2013) The lifeways of hunter-gatherers. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  101. Kivell TL, Kibii JM, Churchill SE, Schmid P, Berger LR (2011) Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science 333:1411–1417CrossRefPubMedGoogle Scholar
  102. Lakoff G, Johnson M (2008) Metaphors we live by. University of Chicago Press, ChicagoGoogle Scholar
  103. Laland KN, Janik VM (2006) The animal cultures debate. Trends Ecol Evol 21:542–547CrossRefPubMedGoogle Scholar
  104. Land MF (2014) Do we have an internal model of the outside world. Philos Trans R Soc Lond B Biol Sci 369:1–6CrossRefGoogle Scholar
  105. Leroi-Gourhan A (1964) Le geste et la parole. Armand Colin, ParisGoogle Scholar
  106. Liu X, Zhan Q (2013) Description of the human hand grasp using graph theory. Med Eng Phys 35:1020–1027CrossRefPubMedGoogle Scholar
  107. Lombard M, Haidle MN (2012) Thinking a bow-and-arrow set: cognitive implications of Middle Stone Age bow and stone-tipped arrow technology. Camb Archaeol J 22:237–264CrossRefGoogle Scholar
  108. Lozano M, Bermúdez de Castro JM, Carbonell E, Arsuaga JL (2008) Non-masticatory uses of anterior teeth of Sima de los Huesos individuals (Sierra de Atapuerca, Spain). J Hum Evol 55:713–728CrossRefPubMedGoogle Scholar
  109. Lycett SJ (2011) Most beautiful and most wonderful: those endless stone tool forms. J Evol Psychol 9:143–171CrossRefGoogle Scholar
  110. Machin AJ, Dunbar RIM (2011) The brain opiod theory of social attachment: a review of the evidence. Behaviour 148:985–1025CrossRefGoogle Scholar
  111. Maguire EA, Burgess N, O’Keefe J (1999) Human spatial navigation: cognitive maps, sexual dimorphism, and neural substrates. Curr Opin Neurobiol 9:171–177CrossRefPubMedGoogle Scholar
  112. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RSJ, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 97:4398–4403CrossRefPubMedPubMedCentralGoogle Scholar
  113. Maguire EA, Spiers HG, Good CD, Hartley T, Frackowiak RSJ, Burgess N (2003) Navigation expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus 13:250–259CrossRefPubMedGoogle Scholar
  114. Maister L, Slater M, Sanchez-Vives MV, Tsakiris M (2015) Changing bodies changes minds: owning another body affects social cognition. Trends Cogn Sci 19:6–12CrossRefGoogle Scholar
  115. Malafouris L (2008) Beads for a plastic mind: the ‘blind man’s stick’ (BMS) hypothesis and the active nature of material culture. Camb Archaeol J 18:401–414CrossRefGoogle Scholar
  116. Malafouris L (2010a) Metaplasticity and the human becoming: principles of neuroarchaeology. J Anthropol Sci 88:49–72PubMedPubMedCentralGoogle Scholar
  117. Malafouris L (2010b) The brain-artefact interface (BAI): a challenge for archaeology and cultural neuroscience. Soc Cogn Affect Neurosci 5:264–273CrossRefPubMedPubMedCentralGoogle Scholar
  118. Malafouris L (2013) How things shape the mind: a theory of material engagement. MIT Press, Cambridge, MAGoogle Scholar
  119. Maravita A, Iriki A (2004) Tools for the body (schema). Trends Cogn Sci 8:79–86CrossRefPubMedGoogle Scholar
  120. Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, Villringer A, Castellanos FX, Milham MP, Petrides M (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci U S A 106:20069–20074CrossRefPubMedPubMedCentralGoogle Scholar
  121. Marino BFM, Gallese V, Buccino G, Riggio L (2012) Language sensorimotor specificity modulates the motor system. Cortex 48:849–856CrossRefPubMedGoogle Scholar
  122. Mars R, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MAP, Bergmann C, Mitchell AS, Baxter MG, Behrens TEJ, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MFS (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31:4087–4100CrossRefPubMedPubMedCentralGoogle Scholar
  123. Marzke MW (1997) Precision grips, hand morphology, and tools. Am J Phys Anthropol 102:91–110CrossRefPubMedGoogle Scholar
  124. Marzke MW (2013) Tool making, hand morphology and fossil hominins. Philos Trans R Soc B 368:1–8CrossRefGoogle Scholar
  125. Marzke MW, Marzke RF (2000) Evolution of the human hand: approaches to acquiring, analysing and interpreting the anatomical evidence. J Anat 197:121–140CrossRefPubMedPubMedCentralGoogle Scholar
  126. Marzke MW, Shackley MS (1986) Hominid hand use in the Pliocene and Pleistocene: evidence from experimental archaeology and comparative morphology. J Hum Evol 15:439–460CrossRefGoogle Scholar
  127. Mattens F (2013) Perception and representation: mind the hand. In: Radman Z (ed) The hand, an organ of the mind: what the manual tells the mental. MIT Press, Cambridge, MAGoogle Scholar
  128. Menninger K (1992) Number words and number symbols: a cultural history of numbers. Dover, New YorkGoogle Scholar
  129. Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:1–11CrossRefGoogle Scholar
  130. Mountcastle VB (1995) The parietal system and some higher brain functions. Cereb Cortex 5:377–390CrossRefPubMedGoogle Scholar
  131. Nadel L, Hardt O (2004) The spatial brain. Neuropsychology 18:473–476CrossRefPubMedGoogle Scholar
  132. Napier JR (1956) The prehensile movements of the human hand. J Bone Joint Surg 38B:902–913CrossRefGoogle Scholar
  133. Neubauer S, Gunz P, Hublin JJ (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215:240–255CrossRefPubMedPubMedCentralGoogle Scholar
  134. Neubauer S, Gunz P, Hublin J-J (2010) Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59:555–566CrossRefPubMedGoogle Scholar
  135. Niewoehner WA (2001) Behavioral inferences from the Skhul/Qafzeh early modern human hand remains. Proc Natl Acad Sci U S A 98:2979–2984CrossRefPubMedPubMedCentralGoogle Scholar
  136. Nonaka T (2011) What is the behavior of a C4 quadriplegic mouth calligrapher constant function of? BIO Web Conf 1:1–4CrossRefGoogle Scholar
  137. Nonaka T (2013) Motor variability but functional specificity: the case of a C4 tetraplegic mouth calligrapher. Ecol Psychol 25:131–154CrossRefGoogle Scholar
  138. Nonaka T, Bril B (2014) Fractal dynamics in dexterous tool use: the case of hammering behavior of bead craftsmen. J Exp Psychol 40:218–231Google Scholar
  139. Nonaka T, Bril B, Rein R (2010) How do stone knappers predict and control the outcome of flaking? implications for understanding early stone tool technology. J Hum Evol 59:155–167CrossRefPubMedGoogle Scholar
  140. Nummenmaa L, Tuominen L, Dunbar R, Hirvonen J, Manninen S, Arponen E, Machin A, Hari R, Jääskeläinen IP, Sams M (2016) Social touch modulates endogenous μ-opioid system activity in humans. NeuroImage 138:242–247CrossRefPubMedGoogle Scholar
  141. Orban GA, Caruana F (2014) The neural basis of human tool use. Front Psychol 5:1–12Google Scholar
  142. Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand JB, Vanduffel W (2006) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44:2647–2667CrossRefPubMedGoogle Scholar
  143. Overmann KA (2015) Teeth, tools and human becoming. J Anthropol Sci 93:163–167PubMedPubMedCentralGoogle Scholar
  144. Peer M, Salomon R, Goldberg I, Blanke O, Arzy S (2015) Brain system for mental orientation in space, time, and person. Proc Natl Acad Sci U S A 112:11072–11077CrossRefPubMedPubMedCentralGoogle Scholar
  145. Pelegrin J (2009) Cognition and the emergence of language: a contribution from lithic technology. In: de Beaune SA, Coolidge FL, Wynn T (eds) Cognitive archaeology and human evolution. Cambridge University Press, CambridgeGoogle Scholar
  146. Plummer T (2004) Flaked stones and old bones: biological and cultural evolution at the dawn of technology. Yearb Phys Anthropol 47:118–164CrossRefGoogle Scholar
  147. Ponce de León MS, Bienvenu T, Akazawa T, Zollikofer CPE (2016) Brain development is similar in Neanderthals and modern humans. Curr Biol 26:R665–R666CrossRefPubMedGoogle Scholar
  148. Pouydebat E, Gorce P, Coppens Y, Bels V (2009) Biomechanical study of grasping according to the volume of the object: human versus non-human primates. J Biomech 42:266–272CrossRefPubMedGoogle Scholar
  149. Prinz J (2009) Is consciousness embodied? In: Robbins P, Aydede M (eds) The Cambridge handbook of situated cognition. Cambridge University Press, CambridgeGoogle Scholar
  150. Prinz JJ, Barsalou LW (2000) Steering a course for embodied representation. In: Dietrich E, Markman A (eds) Cognitive dynamics: conceptual change in humans and machines. MIT Press, CambridgeGoogle Scholar
  151. Quallo MM, Price CJ, Ueno K, Asamizuya T, Cheng K, Lemon RN, Iriki A (2009) Gray and white matter changes associated with tool-use learning in macaque monkeys. Proc Natl Acad Sci U S A 106:18379–18384CrossRefPubMedPubMedCentralGoogle Scholar
  152. Rilling JK (2006) Human and non-human primate brains: are they allometrically scaled versions of the same design? Evol Anthropol 15:65–67CrossRefGoogle Scholar
  153. Rilling JK, Seligman RA (2002) A quantitative morphometrics comparative analysis of the primate temporal lobe. J Hum Evol 42:505–533CrossRefPubMedGoogle Scholar
  154. Rilling JK, Barks SK, Parr LA, Preuss TM, Faber TL, Pagnoni G, Bremner JD, Votaw JR (2007) A comparison of resting-state brain activity in humans and chimpanzees. Proc Natl Acad Sci U S A 104:17146–17151CrossRefPubMedPubMedCentralGoogle Scholar
  155. Robbins P, Aydede M (eds) (2009) The Cambridge handbook of situated cognition. Cambridge University Press, CambridgeGoogle Scholar
  156. Rochat P (1989) Object manipulation and exploration in 2- to 5-month-old infants. Dev Psychobiol 25:871–884CrossRefGoogle Scholar
  157. Rochat P (1993) Hand-mouth coordination in the newborn: morphology, determinants, and early development of a basic act. In: Savelsbergh GJP (ed) The development of coordination in infancy. Elsevier, AmsterdamGoogle Scholar
  158. Roche RAP, Mangaoang MA, Commins S, O’Mara SM (2005) Hippocampal contributions to neurocognitive mapping in humans: a new model. Hippocampus 15:622–641CrossRefPubMedGoogle Scholar
  159. Rolian C, Lieberman DE, Zermeno JP (2011) Hand biomechanics during simulated stone tool use. J Hum Evol 61:26–41CrossRefPubMedGoogle Scholar
  160. Rushworth MFS, Paus T, Sipila PK (2001) Attention systems and the organization of the human parietal cortex. J Neurosci 21:5262–5271CrossRefPubMedGoogle Scholar
  161. Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1997) The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20:350–357CrossRefPubMedGoogle Scholar
  162. Saucier DM, Green SM, Leason J, MacFadden A, Bell S, Elias LJ (2002) Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies? Behav Neurosci 116:403–410CrossRefPubMedGoogle Scholar
  163. Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 18:2141–2157CrossRefPubMedPubMedCentralGoogle Scholar
  164. Schick K, Toth N, Garufi G, Savage-Rumbaugh ES, Rumbaugh D, Sevcik R (1999) Continuing investigations into stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). J Archaeol Sci 26:821–832CrossRefGoogle Scholar
  165. Scott N, Neubauer S, Hublin JJ, Gunz P (2014) A shared pattern of postnatal endocranial development in extant hominoids. Evol Biol 41:572–594CrossRefGoogle Scholar
  166. Smith EA (1988) Risk and uncertainty in the “original affluent society”: evolutionary ecology of resource-sharing and land tenure. In: Ingold T, Riches D, Woodburn J (eds) Hunters and gatherers: history, evolution, and social change, vol 1. Berg, Oxford, pp 222–252Google Scholar
  167. Smith BC (1999) Situatedness/embeddedness. In: Wilson RA, Keil FC (eds) The MIT encyclopedia of the cognitive sciences. MIT Press, CambridgeGoogle Scholar
  168. Sotero RC, Iturria-Medina Y (2011) From blood oxygenation level dependent (BOLD) signals to brain temperature maps. Bull Math Biol 73:2731–2747CrossRefPubMedGoogle Scholar
  169. Spiers HJ, Maguire EA (2006) Thoughts, behaviour, and brain dynamics during navigation in the real world. NeuroImage 31:1826–1840CrossRefPubMedGoogle Scholar
  170. Stout D, Chaminade T (2007) The evolutionary neuroscience of tool making. Neuropsychologia 45:1091–1100CrossRefPubMedGoogle Scholar
  171. Stout D, Hecht E, Khreisheh N, Bradley B, Chaminade T (2015) Cognitive demands of lower Paleolithic toolmaking. PLoS One 10:1–18CrossRefGoogle Scholar
  172. Suvilehto JT, Glerean E, Dunbar RIM, Hari R, Nummenmaa L (2015) Topography of social touching depends on emotional bonds between humans. Proc Natl Acad Sci U S A 112:13811–13816CrossRefPubMedPubMedCentralGoogle Scholar
  173. Sznajder B, Sabelis MW, Egas M (2012) How adaptive learning affects evolution: reviewing theory on the Baldwin effect. Evol Biol 39:301–310CrossRefPubMedGoogle Scholar
  174. Tallis R (2003) The hand: a philosophical inquiry into human being. Edinburgh University Press, EdinburghGoogle Scholar
  175. Tallis R (2011) Aping mankind: neuromania, darwinitis and the misrepresentation of humanity. Acumen, DurhamGoogle Scholar
  176. Tixier J (1967) Procédés d’analyse et questions de terminologie dans l’étude des ensembles industriels du Paléolithique récent et de l’Épipaléolithique en Afrique du Nord-Ouest. In: Bishop WW, Clark JD (eds) Background to evolution in Africa. University of Chicago Press, ChicagoGoogle Scholar
  177. Tostevin GB (2013) Seeing lithics: a middle-range theory for testing for cultural transmission in the Pleistocene. Oxbow Books, OakvilleGoogle Scholar
  178. Toth N, Schick KD, Savage-Rumbaugh ES, Sevcik RA, Rumbaugh DM (1993) Pan the tool-maker: investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). J Archaeol Sci 20:81–91CrossRefGoogle Scholar
  179. Turvey MT, Carello C (2011) Obtaining information by dynamic (effortful) touching. Philos Trans R Soc B 366:3123–3132CrossRefGoogle Scholar
  180. Uomini N, Meyer GF (2013) Shared brain lateralization patterns in language and Acheulean stone tool production: a functional transcranial Doppler ultrasound study. PLoS One 8:1–8CrossRefGoogle Scholar
  181. Utevsky AV, Smith DV, Huettel SA (2014) Precuneus is a functional core of the default-mode network. J Neurosci 34:932–940CrossRefPubMedPubMedCentralGoogle Scholar
  182. Vanduffel W, Fize D, Peuskens H, Denys K, Sunaert S, Todd JT, Orban GA (2002) Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298:413–415CrossRefPubMedGoogle Scholar
  183. Vankov I, Kokinov B (2013) The role of the motor system in conceptual processing: effects of object affordances beyond response interference. Acta Physiol 143:52–57Google Scholar
  184. Wadley L (2001) What is cultural modernity? A general view and a South African perspective from Rose Cottage Cave. Camb Archaeol J 11:201–221CrossRefGoogle Scholar
  185. Wardak C, Hamed SB, Duhamel JR (2005) Parietal mechanism of selective attention in monkeys and humans. In: Dehaene S, Duhamel JR, Hauser MD, Rizzolatti G (eds) From monkey brain to human brain. MIT Press, Cambridge, MAGoogle Scholar
  186. Weidenreich F (1941) The brain and its role in the phylogenetic transformation of the human skull. Trans Am Philos Soc XXXI:321–442Google Scholar
  187. Weissner P (1982) Risk, reciprocity and social influences on !Kung San economics. In: ELR L (ed) Politics and history in band societies. Cambridge University Press, CambridgeGoogle Scholar
  188. Weissner P (1984) Reconsidering the behavioral basis for style: a case study among the Kalahari San. J Anthropol Archaeol 3:190–234CrossRefGoogle Scholar
  189. Whallon R (2006) Social networks and information: non-utilitarian mobility among hunter-gatherers. J Anthropol Archaeol 25:259–270CrossRefGoogle Scholar
  190. Whallon R, Lovis WA, Hitchcock RK (2011) Information and its role in hunter-gatherer bands, Ideas, debates and perspectives, vol 5. UCLA/Cotsen Institute of Archaeology Press, Los Angeles, CAGoogle Scholar
  191. Whitlock JR, Sutherland RJ, Witter MP, Moser M-B, Moser EI (2008) Navigating from hippocampus to parietal cortex. Proc Natl Acad Sci U S A 105:14755–14762CrossRefPubMedPubMedCentralGoogle Scholar
  192. Williams EM, Gordon AD, Richmond BG (2012) Hand pressure distribution during Oldowan stone tool production. J Hum Evol 62:520–532CrossRefPubMedGoogle Scholar
  193. Wynn T (1989) The evolution of spatial competence. University of Illinois Press, ChicagoGoogle Scholar
  194. Wynn T (2000) Symmetry and the evolution of the modular linguistic mind. In: Carruthers P, Chamberlain A (eds) Evolution and the human mind: modularity, language and meta-cognition. Cambridge University Press, CambridgeGoogle Scholar
  195. Wynn T (2002) Archaeology and cognitive evolution. Behav Brain Sci 25:389–402PubMedPubMedCentralGoogle Scholar
  196. Wynn T (2014) Commentary on ‘extended mind and visuo-spatial integration: three hands for the Neandertal lineage’. J Anthropol Sci 92:291–293Google Scholar
  197. Wynn T, Coolidge FL (2003) The role of working memory in the evolution of managed foraging. Bef Farm 2:1–16Google Scholar
  198. Zhang S, Li CR (2012) Functional connectivity mapping of the human precuneus by resting state fMRI. NeuroImage 59:3548–3562CrossRefPubMedGoogle Scholar
  199. Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo-, and receptor architectonics of the human parietal cortex. NeuroImage 14:S8–S20CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emiliano Bruner
    • 1
    Email author
  • Enza Spinapolice
    • 2
  • Ariane Burke
    • 3
  • Karenleigh A. Overmann
    • 4
    • 5
  1. 1.Centro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
  2. 2.La Sapienza Università di RomaRomaItaly
  3. 3.Université de MontrealMontrealCanada
  4. 4.School of ArchaeologyUniversity of OxfordOxfordUK
  5. 5.Center for Cognitive ArchaeologyUniversity of ColoradoColorado SpringsUSA

Personalised recommendations