Advertisement

Integrating Variable Renewable Electricity Supply into Manufacturing Systems

  • Jan Beier
  • Sebastian Thiede
  • Christoph Herrmann
Chapter
Part of the Sustainable Production, Life Cycle Engineering and Management book series (SPLCEM)

Abstract

Expanding renewable energy (RE) generation has been increasingly recognized as a central strategy for climate change mitigation. A substantial share of renewable energy generation comes from variable renewable energy sources (e.g.  wind and solar), which are increasingly installed in decentralized structures. As such, integrating decentralized, variable RE generation into existing supply and demand structures is required to successfully further increase their share. Several different approaches and technologies are available for overcoming intertemporal and spatial demand and supply mismatches. Among them are conventional energy storage technologies as well as implicit energy storage options such as embodied energy in products, enabled through load shifting of energy-flexible production and manufacturing systems. This contribution begins with an overview of current challenges toward RE integration, followed by a discussion of available large-scale grid integration measures. Within the following, a focus is set on options for integrating decentralized variable RE. A promising approach is storing embodied energy in products. Its enabling method, energy flexibility of manufacturing systems, is detailed. A method to improve energy flexibility is discussed and its potential application demonstrated in a case study.

References

  1. Albadi MH, El-Saadany EF (2008) A summary of demand response in electricity markets. Electr Power Syst Res 78:1989–1996CrossRefGoogle Scholar
  2. Allwood JM, Cullen JM (2012) Sustainable materials: with both eyes open. UIT, CambridgeGoogle Scholar
  3. Arteconi A, Hewitt N, Polonara F (2012) State of the art of thermal storage for demand-side management. Appl Energy 93:371–389CrossRefGoogle Scholar
  4. Ashok S (2006) Peak-load management in steel plants. Appl Energy 83(5):413–424CrossRefGoogle Scholar
  5. Ashok S, Banerjee R (2003) Optimal cool storage capacity for load management. Energy 28(2):115–126CrossRefGoogle Scholar
  6. Beacon Power (2015). http://beaconpower.com/. Accessed 13 Nov 2015
  7. Beier J, Thiede S, Herrmann C (2015) Increasing energy flexibility of manufacturing systems through flexible compressed air generation. Procedia CIRP 37:18–23CrossRefGoogle Scholar
  8. Bernal-Agustín JL, Dufo-López R (2009) Simulation and optimization of stand-alone hybrid renewable energy systems. Renew Sustain Energy Rev 13(8):2111–2118CrossRefGoogle Scholar
  9. Braun JE (2003) Load control using building thermal mass. J Sol Energy Eng 125(3):292–301CrossRefGoogle Scholar
  10. Bullough C, Gatzen C, Jakiel C, Koller M, Nowi A, Zunft S (2004) Advanced adiabatic compressed air energy storage for the integration of wind energy. In: Proceedings of European wind energy conference EWEC 2004, London, pp 22–25Google Scholar
  11. Bundesministerium für Wirtschaft und Energie (BMWi) (2014) Zweiter Monitoring-Bericht “Energie der Zukunft”. Technical report, BerlinGoogle Scholar
  12. Bundesministerium für Wirtschaft und Energie (BMWi) (2015) Erneuerbare Energien - Zeitreihen Erneuerbare Energien. http://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html. Accessed 14 Dec 2015
  13. Butterbach S, Vulturescu B, Forgez C, Coquery G, Friedrich G (2011) Lead-acid battery model for hybrid energy storage. In: 2011 IEEE vehicle power and propulsion conference, Chicago, IL. IEEE, pp 1–5Google Scholar
  14. Crotogino F, Mohmeyer K-U, Scharf R (2001) Huntorf CAES: more than 20 years of successful operation. Solut Min Res Inst Spring Meet. Orlando, FL, pp 351–357Google Scholar
  15. Denholm P, Ela E, Kirby B, Milligan M (2010) The role of energy storage with renewable electricity generation. Technical report, National Renewable Energy Laboratory, Golden, CO. http://www.nrel.gov/docs/fy10osti/47187.pdf
  16. DESTATIS (2014) Industriebetriebe produzieren knapp 9% der in Deutschland erzeugten Strommenge. https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2014/10/PD14_363_433.html. Accessed 16 Mar 2015
  17. DESTATIS (2015) Energieverwendung der Betriebe im Verarbeitenden Gewerbe 2013. https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/Energie/Verwendung/Tabellen/KohleErdgasStrom.html. Accessed 16 Mar 2015
  18. Deutsche Energie-Agentur GmbH (dena) (2010) Dena grid study II. Integration of renewable energy sources in the German power supply system from 2015–2020 with an outlook to 2025. Technical report, BerlinGoogle Scholar
  19. DIHK and VEA (2014) Faktenpapier Eigenerzeugung von Strom: Rahmenbedingungen, Trends. Beispiele, Technical report, Berlin, Brüssel, HannoverGoogle Scholar
  20. Elkarmi F, AbuShikhah N (2012) Power system planning technologies and applications: concepts. solutions and management, engineering science reference, Hershey, PAGoogle Scholar
  21. Fernandez M, Li L, Sun Z (2013) “Just-for-Peak” buffer inventory for peak electricity demand reduction of manufacturing systems. Int J Prod Econ 146(1):178–184CrossRefGoogle Scholar
  22. Gallagher KG, Nelson PA (2014) Manufacturing costs of batteries for electric vehicles. In: Pistoia G (ed) Lithium-ion batteries: advances and applications. Elsevier B.V, Amsterdam et al, pp 97–126CrossRefGoogle Scholar
  23. Germany trade and invest (2015) The energy storage market in Germany. Technical report, KölnGoogle Scholar
  24. Graßl M (2015) Bewertung der Energieflexibilität in der Produktion. Herbert Utz Verlag, MünchenGoogle Scholar
  25. Graßl M, Reinhart G (2014) Evaluating measures for adapting the energy demand of a production system to volatile energy prices. Procedia CIRP 15:129–134CrossRefGoogle Scholar
  26. Graßl M, Vikdahl E, Reinhart G (2013) A petri-net based approach for evaluating energy flexibility of production machines. In: Zäh M (ed) Proceedings of the 5th international conference on changeable, agile, reconfigurable and virtual production (CARV 2013). Springer, Switzerland, Munich, pp 303–308CrossRefGoogle Scholar
  27. Gutowski TG, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. In: 13th CIRP international conference on life cycle engineering, Lueven, pp 623–627Google Scholar
  28. IPCC (2012) Renewable energy sources and climate change mitigation: special report of the Intergovernmental Panel on Climate Change. Technical report, Intergovernmental Panel on Climate Change, Cambridge.  https://doi.org/10.5860/CHOICE.49-6309
  29. IPCC (2014) Climate change 2014: mitigation of climate change. working group III contribution to the IPCC 5th assessment report. Chapter 7: energy systems. In: Climatic change (2014) Mitigation of climate change working group III contribution to IPCC 5th assessment report. Cambridge University Press, Cambridge, New York, NYGoogle Scholar
  30. Junge M (2007) Simulationsgestützte Entwicklung und Optimierung einer energieeffizienten Produktionssteuerung. kassel university press GmbH, KasselGoogle Scholar
  31. Karellas S, Tzouganatos N (2014) Comparison of the performance of compressed-air and hydrogen energy storage systems: Karpathos island case study. Renew Sustain Energy Rev 29:865–882CrossRefGoogle Scholar
  32. Keller F, Schönborn C, Reinhart G (2015) Energy-orientated machine scheduling for hybrid flow shops. Procedia CIRP 29:156–161CrossRefGoogle Scholar
  33. Kleiser G, Rauth V (2013) Dynamic modelling of compressed air energy storage for small-scale industry applications. Int J Energy Eng 3(3):127–137Google Scholar
  34. Li L, Sun Z, Tang Z (2012) Real time electricity demand response for sustainable manufacturing systems: challenges and a case study. In: IEEE international conference on automation science and engineering, Seoul, pp 353–357. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6386437
  35. Lorenz S, Putz M, Schlegel A (2012) Energieeffizienz 2.0: Neue Geschäftsmodelle auch für die Industrie. ZWF Zeitschrift für wirtschaftlichen Fabrikbetr 107(9):599–602CrossRefGoogle Scholar
  36. Lund H, Salgi G (2009) The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers Manag 50(5):1172–1179CrossRefGoogle Scholar
  37. Lund H, Salgi G, Elmegaard B, Andersen AN (2009) Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices. Appl Therm Eng 29(5–6):799–806CrossRefGoogle Scholar
  38. Middelberg A, Zhang J, Xia X (2009) An optimal control model for load shifting—with application in the energy management of a colliery. Appl Energy 86:1266–1273CrossRefGoogle Scholar
  39. Neugebauer R (2014) Handbuch Ressourcenorientierte Produktion. Carl Hanser Verlag GmbH und Co, KG, WienGoogle Scholar
  40. Nielsen L, Leithner R (2009) Dynamic simulation of an innovative compressed air energy storage plant—detailed modelling of the storage cavern. WSEAS Trans Power Syst 4(8):253–263Google Scholar
  41. Oberhofer A (2012) Energy storage technologies and their role in renewable integration. Technical report, Global Energy Network Institute. https://www.geni.org/globalenergy/research/energy-storage-technologies/Energy-Storage-Technologies.pdf
  42. Oertel D (2008) Energiespeicher - Stand und Perspektiven: Sachstandsbericht zum Monitoring “Nachhaltige Energieversorgung”. Technical report, TAB - Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag, BerlinGoogle Scholar
  43. Paulus M, Borggrefe F (2011) The potential of demand-side management in energy-intensive industries for electricity markets in Germany. Appl Energy 88(2):432–441CrossRefGoogle Scholar
  44. Qazi A, Fayaz H, Wadi A, Raj RG, Rahim N (2015) The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review. J Clean Prod 104:1–12CrossRefGoogle Scholar
  45. Rankin R, Rousseau P (2008) Demand side management in South Africa at industrial residence water heating systems using in line water heating methodology. Energy Convers Manag 49(1):62–74CrossRefGoogle Scholar
  46. Reynders G, Nuytten T, Saelens D (2013) Potential of structural thermal mass for demand-side management in dwellings. Build Environ 64:187–199CrossRefGoogle Scholar
  47. Ruppel E (2003) Druckluft Handbuch. 4th edn, EssenGoogle Scholar
  48. Schultz C, Sellmaier P, Reinhart G (2015) An approach for energy-oriented production control using energy flexibility. Procedia CIRP 29:197–202CrossRefGoogle Scholar
  49. Seo H-R, Kim G-H, Kim S-Y, Kim N, Lee H-G, Hwang C, Park M, Yu I-K (2010) Power quality control strategy for grid-connected renewable energy sources using PV array and supercapacitor. In: International conference on electric power systems 2010. Incheon, Korea, pp 437–441Google Scholar
  50. Sun Z, Li L, Fernandez M, Wang J (2014) Inventory control for peak electricity demand reduction of manufacturing systems considering the tradeoff between production loss and energy savings. J Clean Prod 82:84–93CrossRefGoogle Scholar
  51. Yuan X, Zuo J, Huisingh D (2015) Social acceptance of wind power: a case study of Shandong Province, China. J Clean Prod 92:168–178CrossRefGoogle Scholar
  52. Zhai Y, Sun S, Wang J, Niu G (2011) Job shop bottleneck detection based on orthogonal experiment. Comput Ind Eng 61(3):872–880CrossRefGoogle Scholar
  53. Zunft S, Jakiel C, Koller M, Bullough C (2006) Adiabatic compressed air energy storage for the grid integration of wind power. In: Sixth international workshop on large-scale integration of wind power and transmission networks for offshore windfarms, Delft, pp 1–6Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jan Beier
    • 1
  • Sebastian Thiede
    • 2
  • Christoph Herrmann
    • 2
  1. 1.The Boston Consulting GroupCologneGermany
  2. 2.Chair of Sustainable Manufacturing and Life Cycle Engineering, Institute of Machine Tools and Production Technology (IWF)Technical University BraunschweigBraunschweigGermany

Personalised recommendations