Advertisement

Colors in Glasses

  • Dominique de LignyEmail author
  • Doris Möncke
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Glass is a fascinating material, not only because of its transparency and for its formability, but also because of the manifold facets of bright colors it can display. Just remember how the colored glasses of cathedral windows made us dream in our childhood, and how much we could quarrel in the schoolyard over a marble or a bead necklace.

In this chapter, we will attempt to understand the physical origin of different colors and by what chemical processes, hues, and intensity of colors can be controlled in glasses. However, to do so, we must first understand what a color is, and only then will we be able to discuss how the different active color centers, when incorporated into a vitreous matrix, the glass, can create such a variety of responses toward light.

We want to focus especially on the most frequent and, thus, typical causes of glass coloring, that is, the mechanisms of absorption. Examples from many transition metal ions will illustrate how their valence, local structure, or relation to other elements can impact the final glass color. The role of plasmon-resonance, involving metallic nanoparticles will also be described.

However, other light effects due to reflection and scattering in the bulk or at the surface of a glass can also induce colors. For example, the iridescence of corroded glasses, which originates from multireflection on an alteration layer, can be exploited as an artistic effect. Light scattering by crystals or phase separation also plays an important role, since it gives us the option to modify the aspect from transparent to opalescent or to opaque.

Finally, we will present some color-related functionalization of glasses such as photochromism and electrochromism. Many more details on glass and colors can be found in the literature, e. g., [9.1, 9.2, 9.3].

Notes

Acknowledgements

The authors are grateful to HDoz. Dr. Doris Ehrt for sharing her experience as much as the samples that illustrate various aspects of color; we thank her and Dr. Maria Rita Cicconi for many fruitful discussions. We thank Charlie Bellows, Ingrid Berg, Dr. Stefan Karlsson, Prof. Alexis M. Clare, Susan Liebold, Johann Mild, Ute Rempel, Ludwick Sichelstiel, Eva Trummer, and Prof. Edgar Zanotto for photographs, samples, references, and comments. The spectra and graphs in Sect. 9.1.5were realized by Dr. Alexander Veber, who used a lot of creativity to make U-coloration more understandable.We fondly remember Dr. Peter Steppuhn, who passed away before the completion of this book but who, despite his grave illness, helped to ensure that the foto and caption on green forest glass was depicted accurately. Doris Möncke is grateful for financial support through FAPESP during her stay at the Federal University of São Carlos (Brazil), where the first draft of this chapter took form, and to the Knowledge Foundation during her stay at Linnæus University, where she worked at the time this chapter was finalized in its current form.

References

  1. R.J.D. Tilley: Colour and the Optical Properties of Materials (Wiley, Hoboken 2011)Google Scholar
  2. W. Weyl: Coloured Glasses (The Society of Glass Technology, Sheffield 1951)Google Scholar
  3. G. Blasse, B.C. Grabmaier: Luminescent Materials (Springer, Berlin 1994)CrossRefGoogle Scholar
  4. J.K. Bowmaker, H.J. Dartnall: Visual pigments of rods and cones in a human retina, J. Physiology 298, 501–511 (1980)CrossRefGoogle Scholar
  5. J. Schanda: Colorimetry: Understanding the CIE System (Wiley, Hoboken 2008)Google Scholar
  6. T. Bring: Red Glass Coloration (VDM Verlag Dr. Müller, Saarbrücken 2010)Google Scholar
  7. D. Möncke, M. Papageorgiou, A. Winterstein-Beckmann, N. Zacharias: Roman glasses coloured by dissolved transition metal ions: Redox-reactions, optical spectroscopy and ligand field theory, J. Archaeol. Sci. 46, 23–36 (2014)CrossRefGoogle Scholar
  8. A. Cosentino: FORS spectral database of historical pigments in different binders, E-conservation J. 2, 53–65 (2014)Google Scholar
  9. J. García Solé, L.E. Bausá, D. Jaque: An Introduction to the Optical Spectroscopy of Inorganic Solids (Wiley, Hoboken 2005)CrossRefGoogle Scholar
  10. F. Robert, U. Boris: Semiconductors and semimetals. In: Semiconductors and Semimetals, ed. by F. Robert, U. Boris (Elsevier, Amsterdam 2004) p. iiGoogle Scholar
  11. D. Ehrt: Redox behaviour of polyvalent ions in the ppm range, J. Non-Cryst. Solids 196, 304–308 (1996)CrossRefGoogle Scholar
  12. C.P. Rodriguez, J.S. McCloy, M.J. Schweiger, J.V. Crum, A. Winschell: Optical basicity and nepheline crystallization in high alumina glasses, PNNL-20184, EMS-RPT-003 (Pacific Northwest National Laboratory, Richland 2011), https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-20184.pdf
  13. V. Dimitrov, T. Komatsu: An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength, J. Univ. Chem. Technol. Metall. 45, 219–250 (2010)Google Scholar
  14. V. Dimitrov, S. Sakka: Electronic oxide polarizability and optical basicity of simple oxides. I, J. Appl. Phys. 79, 1736–1740 (1996)CrossRefGoogle Scholar
  15. J.A. Duffy, M.D. Ingram: An interpretation of glass chemistry in terms of the optical basicity concept, J. Non-Cryst. Solids 21, 373–410 (1976)CrossRefGoogle Scholar
  16. J.A. Duffy: Bonding, Energy Levels, and Bands in Inorganic Solids (Longman, Essex 1990)Google Scholar
  17. J.A. Duffy: A review of optical basicity and its applications to oxidic systems, Geochim. Cosmochim. Acta 57, 3961–3970 (1993)CrossRefGoogle Scholar
  18. J.A. Duffy: Optical basicity: A practical acid-base theory for oxides and oxyanions, J. Chem. Educ. 73, 1138–1142 (1996)CrossRefGoogle Scholar
  19. J.A. Duffy: Optical basicity of fluorides and mixed oxide–fluoride glasses and melts, Phys. Chem. Glasses–Eur. J. Glass Sci. Technol. Part B 52, 107–114 (2011)Google Scholar
  20. J.A. Duffy: Optical basicity of sulfide systems, J. Chem. Soc. Faraday Trans. 88, 2397–2400 (1992)CrossRefGoogle Scholar
  21. C.H. Bellows: Photochromism in Rare-Earth Oxide Glasses, Bachelor Thesis (Alfred University, Alfred 2016)Google Scholar
  22. J.J. Kunicki-Goldfinger, I.C. Freestone, I. McDonald, J.A. Hobot, H. Gilderdale-Scott, T. Ayers: Technology, production and chronology of red window glass in the medieval period – rediscovery of a lost technology, J. Archaeol. Sci. 41, 89–105 (2014)CrossRefGoogle Scholar
  23. J. Perez-Arantegui, E. Ribechini, G. Cepria, I. Degano, M.P. Colombini, J. Paz-Peralta, E. Ortiz-Palomar: Colorants and oils in Roman make-ups–an eye witness account, Trac-Trends in Anal, Chem. (2009),  https://doi.org/10.1016/j.trac.2009.05.006CrossRefGoogle Scholar
  24. W. Vogel: Glass Chemistry, 2nd edn. (Springer, Berlin 1992)Google Scholar
  25. J. Tauc: Highly transparent glasses. In: Optical Properties of Highly Transparent Solids, ed. by S.S. Mitra, B. Bendow (Springer, Boston 1975) pp. 245–260CrossRefGoogle Scholar
  26. C.R. Bamford: Colour Generation and Control in Glass (Elsevier, Amsterdam 1977)Google Scholar
  27. R.G.C. Beerkens: Amber chromophore formation in sulphur- and iron-containing soda-lime-silica glasses, Glass Sci. Technol. 76, 166–175 (2003)Google Scholar
  28. P.A. Bingham, A.J. Connelly, R.J. Hand, N.C. Hyatt, P.A. Northrup, R.A. Mori, P. Glatzel, M. Kavčič, M. Žitnik, K. Bučar, R. Edge: A multi-spectroscopic investigation of sulphur speciation in silicate glasses and slags, Glastech. Ber. Glass Sci. Technol. 51, 63–80 (2010)Google Scholar
  29. A. Schütz, D. Ehrt, M. Dubiel, X.C. Yang, B. Mosel, H. Eckert: A multi-method characterization of borosilicate glasses doped with 1 up to 10 mol% of Fe, Ti and Sb, Glass Sci. Technol. 77, 295–305 (2004)Google Scholar
  30. H.L. Schläfer, G. Gliemann: Einführung in die Ligandenfeldtheorie (Akademische Verlagsgesellschaft, Frankfurt am Main 1967)Google Scholar
  31. T. Bates: Ligand field theory and absorption spectra of transition-metal ions in glasses. In: Modern Aspects of the Vitreous State, ed. by J.D. Mackenzie (Butterworths, London 1962) pp. 195–254Google Scholar
  32. A. Paul: Chemistry of Glasses (Springer, Dordrecht 1990)Google Scholar
  33. J. Wong, C.A. Angell: Glass Structure by Spectroscopy (Marcel Dekker, New York 1976)Google Scholar
  34. J. Ferguson: Spectroscopy of 3d complexes. In: Progress in Inorganic Chemistry, Vol. 12, ed. by S.J. Lippard (Wiley, Hoboken 2007) pp. 159–293CrossRefGoogle Scholar
  35. P.W. Atkins, J. de Paula: Physikalische Chemie, 5th edn. (Wiley, Weinheim 2013)Google Scholar
  36. E. Fritsch, G.R. Rossman: An update on color in gems. Part 1: Introduction and colors caused by dispersed metal ions, Gems Gemology 23, 126–139 (1987)CrossRefGoogle Scholar
  37. M.G. Brik, N.M. Avram, C.N. Avram: Exchange charge model of crystal field for 3d ions. In: Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis, ed. by N.M. Avram, M.G. Brik (Springer, Berlin 2013) pp. 29–94CrossRefGoogle Scholar
  38. M.G. Brik, A.M. Srivastava: Systematic analysis of the spectroscopic characteristics of 3d ions in a free state and some cubic crystals, Opt. Mater. 35, 1776–1782 (2013)CrossRefGoogle Scholar
  39. C.G. Ma, M.G. Brik: Systematic analysis of spectroscopic characteristics of heavy transition metal ions with 4dN and 5dN ($$N=1\ldots 10$$) electronic configurations in a free state, J. Lumin. 145, 402–409 (2014)CrossRefGoogle Scholar
  40. M. Hubert, A.J. Faber, F. Akmaz, H. Sesigur, E. Alejandro, T. Maehara, S.R. Kahl: Stabilization of divalent chromium Cr(II) in soda–lime–silicate glasses, J. Non-Cryst. Solids 403, 23–29 (2014)CrossRefGoogle Scholar
  41. D. Ehrt, M. Leister, A. Matthai: Redox behaviour in glass forming melts, Molten Salt Forum 5/6, 547–554 (1998)Google Scholar
  42. A. Matthai, D. Ehrt, C. Rüssel: Redox behaviour of polyvalent ions in phosphate glass melts and phosphate glasses, Glastech. Ber. Glass Sci. Technol. 71, 187–192 (1998)Google Scholar
  43. M. Leister, D. Ehrt., G. von der Gonna, C. Rüssel, F.W. Breitbarth: Redox states and coordination of vanadium in sodium silicates melted at high temperatures, Phys. Chem. Glasses 40, 319–325 (1999)Google Scholar
  44. M. Leister, D. Ehrt: Redox behavior of iron and vanadium ions in silicate melts at temperatures up to 2000 degrees C, Glastech. Ber. Glass Sci. Technol. 72, 153–160 (1999)Google Scholar
  45. D. Ehrt: Zinc and manganese borate glasses – phase separation, crystallisation, photoluminescence and structure, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 54, 65–75 (2013)Google Scholar
  46. J.A. Duffy, M.D. Ingram, S. Fong: Effect of basicity on chemical bonding of metal ions in glass and its relevance to their stability, Phys. Chem. Chem. Phys. 2, 1829–1833 (2000)CrossRefGoogle Scholar
  47. J. Kirchhof, S. Unger, J. Dellith, A. Scheffel: Diffusion in binary TiO2-SiO2 glasses, Opt. Mater. Express 4, 672–680 (2014)CrossRefGoogle Scholar
  48. Z.Y. Yao, D. Möncke, E.I. Kamitsos, P. Houizot, F. Célarié, T. Rouxel, L. Wondraczek: Structure and mechanical properties of copper–lead and copper–zinc borate glasses, J. Non-Cryst. Solids 435, 55–68 (2016)CrossRefGoogle Scholar
  49. D. Möncke, D. Ehrt: Radiation-induced defects in CoO- and NiO-doped fluoride, phosphate, silicate and borosilicate glasses, Glass Sci. Technol. 75, 243–253 (2002)Google Scholar
  50. M. Leister, D. Ehrt: Chromium redox states in different silicate melts at high temperatures (1400–2000°C). In: Proc. 5th Eur. Soc. Glass Sci. Technol. Conf., Vol. A1 (1999) pp. 40–49Google Scholar
  51. D. Ehrt, M. Leister, A. Matthai: Polyvalent elements iron, tin and titanium in silicate, phosphate and fluoride glasses and melts, Phys. Chem. Glasses 42, 231–239 (2001)Google Scholar
  52. M. Müller, M. Carl, T. Kittel, D. Ehrt: Carbon crucible technology for optical glass melting, Glastech. Ber. Glass Sci. Technol. 68, 312–317 (1995)Google Scholar
  53. D.M. Gruen, R.L. McBeth: Tetrahedral NiCl4–ion in crystals and in fused salts. Spectrophotometric study of chloro complexes of Ni(II) in fused salts, J. Phys. Chem. 63, 393–398 (1959)CrossRefGoogle Scholar
  54. D. Möncke: Photo-Ionization of 3d-Ions in fluoride-phosphate glasses, Int. J. Appl. Glass Sci. 6, 249–267 (2015)CrossRefGoogle Scholar
  55. M. Gitter, W. Vogel, H. Schütz: Zur Kupfer (II)-, Nickel (II)-und Kobalt (II)-Koordination in Oxidgläsern, Wiss. Z. FSU Jena Math.-Naturwiss. R. 32, 341–362 (1983)Google Scholar
  56. D. Möncke, D. Ehrt: Influence of melting and annealing conditions on the optical spectra of a borosilicate glass doped with CoO and NiO, Glass Sci. Technol. 75, 163–173 (2002)Google Scholar
  57. A. Dietzel, M. Coenen: Über dreiwertiges Kobalt in Gläsern hohen Alkaligehaltes, Glastechn. Ber. 34, 49–56 (1961)Google Scholar
  58. J.A. Duffy, M.D. Ingram: Environment of Cobalt(II) in Nitrate Glass, J. Am. Ceram. Soc. 51, 544–544 (1968)CrossRefGoogle Scholar
  59. L. Galoisy, L. Cormier, G. Calas, V. Briois: Environment of Ni, Co and Zn in low alkali borate glasses: Information from EXAFS and XANES spectra, J. Non-Cryst. Solids 293–295, 105–111 (2001)CrossRefGoogle Scholar
  60. D. Möncke, J. Jiusti, L.S. Dantas, A.C.M. Rodrigues: Long-term stability of laser-induced defects in (fluoride-)phosphate glasses doped with W, Mo, Ta, Nb and Zr ions, J. Non-Cryst. Solids 498, 401–414 (2018)CrossRefGoogle Scholar
  61. F. Gan, L. Xu: Photonic Glasses (World Scientific, London 2006)CrossRefGoogle Scholar
  62. D. Möncke, D. Ehrt: Photoinduced redox-reactions and transmission changes in glasses doped with 4d- and 5d-ions, J. Non-Cryst. Solids 352, 2631–2636 (2006)CrossRefGoogle Scholar
  63. D. Möncke, D. Ehrt: Irradiation induced defects in glasses resulting in the photoionization of polyvalent dopants, Opt. Mater. 25, 425–437 (2004)CrossRefGoogle Scholar
  64. P. Steppuhn, I. Berg: Waldglashütten im Taunus, Geschichte-Archaeologie-Produkte (Freilichtmuseum Hessenpark, Neu-Anspach 2006)Google Scholar
  65. U. Rempel: Die frühneuzeitliche Weinglashütte bei Wieda/Südharz. In: Glashüttenlandschaft Europa, ed. by P. Steppuhn (Schnell Steiner, Regensburg 2008)Google Scholar
  66. T.T. Volotinen, J.M. Parker, P.A. Bingham: Concentrations and site partitioning of Fe2+ and Fe3+ ions in a soda–lime–silica glass obtained by optical absorbance spectroscopy, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 49, 258–270 (2008)Google Scholar
  67. H. Müller-Simon, J. Bauer, P. Baumann: Redox behavior of selenium in industrial soda-lime-silica glasses, Glastech. Ber. Glass Sci. Technol. 74, 283–291 (2001)Google Scholar
  68. T. Jitwatcharakomol: Optimization and Control of Selenium Chemistry and Color in Flint Glass, Ph.D. Thesis (RWTH Aachen, Aachen 2005)Google Scholar
  69. R.D. Wright: The influence of iron, selenium and cobalt, Glass Technol. 40, 71 (1999)Google Scholar
  70. M.R. Cicconi, A. Veber, D. de Ligny, J. Rocherullé, R. Lebullenger, F. Tessier: Chemical tunability of europium emission in phosphate glasses, J. Lumin. 183, 53–61 (2017)CrossRefGoogle Scholar
  71. A.K. Varshneya: Fundamentals of Inorganic Glasses, 2nd edn. (Society of Glass Technology, Sheffield 2013)Google Scholar
  72. A.J. Shortland: The use and origin of antimonate colorants in early Egyptian glass, Archaeom 44, 517–530 (2002)CrossRefGoogle Scholar
  73. S. Maltoni, A. Silvestri: Innovation and tradition in the fourth century mosaic of the casa delle bestie ferite in aquileia, Italy: Archaeometric characterisation of the glass tesserae, Archaeol. Anthropol. Sci. 10(2), 415–429 (2016)CrossRefGoogle Scholar
  74. D.A. Long: Raman Spectroscopy (McGraw-Hill, New York 1977)Google Scholar
  75. K. Hirao, T. Mitsuyu, J. Si, J. Qiu: Active Glass for Photonic Devices, Photoinduced Structures and Their Application (Springer, Berlin 2001)CrossRefGoogle Scholar
  76. S.D. Stookey: Explorations in Glass: An Autobiography (Wiley-Blackwell, Hoboken 2000)Google Scholar
  77. A.V. Dotsenko, L.B. Glebov, V.A. Tsechomsky: Physics and Chemistry of Photochromic Glasses (CRC, Boca Raton 1997)Google Scholar
  78. F. Kompan, G. Venus, L. Glebova, H. Mingareev, L. Glebov: Photo-thermo-refractive glass with sensitivity to visible and near IR radiation, Opt. Mater. Express 6, 3881–3891 (2016)CrossRefGoogle Scholar
  79. L.B. Glebov: Volume holographic elements in a photo-thermo-refractive glass, J. Hologr. Speckle 5, 1–8 (2008)Google Scholar
  80. L. Canioni, M. Bellec, A. Royon, B. Bousquet, T. Cardinal: Three-dimensional optical data storage using third-harmonic generation in silver zinc phosphate glass, Opt. Lett. 33, 360–362 (2008)CrossRefGoogle Scholar
  81. J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, K. Hirao: Manipulation of gold nanoparticles inside transparent materials, Angew. Chem. Int. Ed. 43, 2230–2234 (2004)CrossRefGoogle Scholar
  82. P. Monk, R. Mortimer, D. Rosseinsky: Electrochromism and Electrochromic Devices (Cambridge Univ. Press, New York 2007)CrossRefGoogle Scholar
  83. C.G. Granqvist: Electrochromics for smart windows: Oxide-based thin films and devices, Thin Solid Films 564, 1–38 (2014)CrossRefGoogle Scholar
  84. C.G. Granqvist: Electrochromic oxides, Renew. Energy 5, 141–153 (1994)CrossRefGoogle Scholar
  85. C.G. Granqvist: Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam 1995)Google Scholar
  86. M. Kamalisarvestani, R. Saidur, S. Mekhilef, F.S. Javadi: Performance, materials and coating technologies of thermochromic thin films on smart windows, Renew. Sustain. Energy Rev. 26, 353–364 (2013)CrossRefGoogle Scholar
  87. P. Kiria, G. Hyett, R. Binions: Solid state thermochromic materials, Adv. Mat. Lett. 1, 86–105 (2010)CrossRefGoogle Scholar
  88. S. Wang, M. Liu, L. Kong, Y. Long, X. Jiang, A. Yu: Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties, Prog. Mater. Sci. 81, 1–54 (2016)CrossRefGoogle Scholar
  89. Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, C. Cao: Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing, Nano Energy 1, 221–246 (2012)CrossRefGoogle Scholar
  90. M. Sundara Rao, Y. Gandhi, B. Sanyal, K. Bhargavi, M. Piasecki, N. Veeraiah: Studies on \(\gamma\)-ray induced structural changes in Nd3+ doped lead alumino silicate glasses by means of thermoluminescence for dosimetric applications in high dose ranges, J. Alloy. Compd. 616, 257–262 (2014)CrossRefGoogle Scholar
  91. S.S.J. Warne: Thermoluminescence in the earth sciences and archeology, J. Therm. Anal. 48, 39–47 (1997)CrossRefGoogle Scholar
  92. G.W. Berger: The use of glass for dating volcanic ash by thermoluminescence, J. Geophys. Res.: Solid Earth 96, 19705–19720 (1991)CrossRefGoogle Scholar
  93. I. Liritzis, A.K. Singhvi, J.K. Feathers, G.A. Wagner, A. Kadereit, N. Zacharias, S.-H. Li: Luminescence Dating in Archaeology, Anthropology, and Geoarchaeology (Springer, Cham 2013)CrossRefGoogle Scholar
  94. B.J.R. Swamy, B. Sanyal, Y. Gandhi, R.M. Kadam, V. Nata Rajan, P. Raghava Rao, N. Veeraiah: Thermoluminescence study of MnO doped borophosphate glass samples for radiation dosimetry, J. Non-Cryst. Solids 368, 40–44 (2013)CrossRefGoogle Scholar
  95. R. Laopaiboon, C. Bootjomchai: Thermoluminescence studies on alkali-silicate glass doped with dysprosium oxide for use in radiation dosimetry measurement, J. Lumin. 158, 275–280 (2015)CrossRefGoogle Scholar
  96. L. Robinet, M. Spring, S. Pagès-Camagna, D. Vantelon, N. Trcera: Investigation of the discoloration of smalt pigment in historic paintings by micro-x-ray absorption spectroscopy at the Co K-edge, Anal. Chem. 83, 5145–5152 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Materials Science and EngineeringFriedrich-Alexander University Erlangen-NürnbergErlangenGermany
  2. 2.Inamori School of Engineering, Glass ScienceAlfred UniversityAlfred, NYUSA

Personalised recommendations