Advertisement

Nonlinear Optical Properties of Glass

  • Marc DussauzeEmail author
  • Thierry Cardinal
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Numerous innovations in photonics have been realized on the basis of nonlinear optical properties, notably in information technologies. To take advantage of the nonlinear optical properties of glass, multidisciplinary research efforts were necessary, combining optics, glass chemistry, material science, as well as development of optical or electrical polarizations processes. This chapter addresses both fundamental aspects of nonlinear optical responses and also the exploitation of nonlinear optical phenomena in glassy material. It starts by a general introduction to nonlinear optical phenomena and concepts. Then, the specific cases of second and third optical responses in glasses are treated separately and described in detail as a function of the corresponding optical phenomena, the various glass families, and their applications.

Notes

Acknowledgements

The authors gratefully acknowledge P. Canioni and Dr. Royon for their help to setup this chapter. This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the Investments for the futureProgramme IdEx Bordeaux—LAPHIA (ANR-10-IDEX-03-02)

References

  1. 6.1
    T.H. Maiman: Simulated optical radiation in ruby, Nature 187, 493 (1960)CrossRefGoogle Scholar
  2. 6.2
    P.P. Franken, A.E. Hill, C.W. Peters, G. Weinreich: Generation of optical harmonics, Phys. Rev. Lett. 7(4), 118 (1961)CrossRefGoogle Scholar
  3. 6.3
    P.W.S.S.R. Friberg: Nonlinear optical glasses for ultrafast optical switches, IEEE J. Quantum Electron. 23(12), 2089 (1987)CrossRefGoogle Scholar
  4. 6.4
    E.M. Vogel, M.J. Weber, D.M. Krol: Nonlinear optical phenomena in glass, Phys. Chem. Glasses 32(6), 231 (1991)Google Scholar
  5. 6.5
    H.A. Lorentz: The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat (Teubner, Leipzig 1916)Google Scholar
  6. 6.6
    D.A. Kleinman: Nonlinear dielectric polarization in optical media, Phys. Rev. 126, 1977 (1962)CrossRefGoogle Scholar
  7. 6.7
    P.N. Butcher, D. Cotter: The elements of nonlinear optics. In: Cambridge Studies in Modern Optics, Vol. 9, ed. by P.L. Knight, W.J. Firth (Cambridge University Press, Cambridge 1990)Google Scholar
  8. 6.8
    I. Kang, S. Smolorz, T. Krauss, F. Wise, B.G. Aitken, N.F. Borelli: Time-domain observation of nuclear contributions to the optical nonlinearities of glasses, Phys. Rev. B 54(18), 12641 (1996)CrossRefGoogle Scholar
  9. 6.9
    M. Sheik-Bahae, D.J. Hagan, E.W.V. Stryland: Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption, Phys. Rev. Lett. 65(1), 96 (1990)CrossRefGoogle Scholar
  10. 6.10
    J.M. Harbold, F.O. Ilday, F.W. Wise, J.S. Sanghera, V.Q. Nguyen, L.B. Shaw, I.D. Aggarwal: Highly nonlinear As-S-Se glasses for all-optical switching, Opt. Lett. 27(2), 119 (2002)CrossRefGoogle Scholar
  11. 6.11
    H. Nasu, O. Sugimoto, J. Matsuoka, K. Kamiya: Non-resonant-type third-order optical non-linearity of alkali silicate and alkali aluminosilicate glasses — contribution of individual chemical species in the glasses to \({\chi} \)(3), J. Non-Cryst. Solids 182, 321 (1995)CrossRefGoogle Scholar
  12. 6.12
    T. Cardinal, E. Fargin, G.L. Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, A. Ducasse, F. Adamietz: Nonlinear optical properties of some niobium(V) oxide glasses, Eur. J. Solid State Inorg. Chem. 33, 597 (1996)Google Scholar
  13. 6.13
    R.A.H. El-Mallawany (Ed.): Tellurite Glasses Handbook (CRC, Boca Raton 2001)Google Scholar
  14. 6.14
    S. Suehara, P. Thomas, A.P. Mirgorodsky, T. Merle-Méjean, J.C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, S. Inoue: Localized hyperpolarizability approach to the origin of nonlinear optical properties in TeO2-based materials, Phys. Rev. B 70, 205121 (2004)CrossRefGoogle Scholar
  15. 6.15
    A.P. Mirgorodsky, M. Soulis, P. Thomas, T. Merle-Méjean, M. Smirnov: Ab initio study of the nonlinear optical susceptibility of TeO2-based glasses, Phys. Rev. B 73, 134206 (2006)CrossRefGoogle Scholar
  16. 6.16
    M. Dutreilh-Colas, P. Thomas, J.C. Champarnaud-Mesjard, E. Fargin: New TeO2 based glasses for nonlinear optical applications: Study of the Tl2O-TeO2-Bi2O3, Tl2O-TeO2-PbO and Tl2O-TeO2-Ga2O3 systems, Phys. Chem. Glasses 44, 349 (2003)Google Scholar
  17. 6.17
    E. Fargin, A. Berthereau, T. Cardinal, G.L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, A. Ducasse: Optical non-linearity in oxide glasses, J. Non-Cryst. Solids 203, 96 (2003)CrossRefGoogle Scholar
  18. 6.18
    B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J.C. Champarnaud, T. Merle, B. Frit, V. Nazabal, E. Fargin, G.L. Flem, M.O. Martin, B. Bousquet, L. Canioni, S.L. Boiteux, P. Segonds, L. Sarger: Glass structure and optical nonlinearities in thallium(I) tellurium(IV) oxide glasses, J. Solid State Chem. 146, 329 (1999)CrossRefGoogle Scholar
  19. 6.19
    O. Noguera, T. Merle-Mejean, A.P. Mirgorodsky, P. Thomas, J.C. Champarnaud-Mesjard: Dynamics and crystal chemistry of tellurites. II. Composition- and temperature-dependence of the Raman spectra of x(Tl2O)+(1-x) Te2O glasses: evidence for a phase separation?, J. Phys. Chem. Solids 65, 981 (2004)CrossRefGoogle Scholar
  20. 6.20
    T. Sekiya, N. Mochida, A. Ohtsuka, M. Tonokawa: Raman spectra of MO1/2–TeO2 (M \(=\) Li, Na, K, Rb, Cs and Tl) glasses, J. Non-Cryst. Solids 144, 128 (1992)CrossRefGoogle Scholar
  21. 6.21
    T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K.L. Foulgoc, C. Meneghini, J.F. Viens, A. Villeneuve: Non-linear optical properties of chalcogenide glasses in the system As-S-Se, J. Non-Cryst. Solids 257, 353 (1999)CrossRefGoogle Scholar
  22. 6.22
    L. Petit, A. Humeau, N. Carlie, S. Cherukulappurath, G. Boudebs, K. Richardson: Nonlinear optical properties of glasses in the system Ge/Ga—Sb—S/Se, Opt. Lett. 31(10), 1495 (2006)CrossRefGoogle Scholar
  23. 6.23
    N. Finlayson, W.C. Banyai, C.T. Seaton, G.I. Stegeman, M. O'Neill, T.J. Cullen, C.N. Ironside: Optical nonlinearities in CdSxSe1-x-doped glass waveguides, J. Opt. Soc. Am. B 6(4), 675 (1989)CrossRefGoogle Scholar
  24. 6.24
    G. Lenz, J. Zimmermann: Large Kerr effect in bulk Se-based chalcogenide glasses, Opt. Lett. 25(4), 254 (2000)CrossRefGoogle Scholar
  25. 6.25
    R.W. Hellwarth, J. Cherlow, T.-T. Yang: Origin and frequency dependence of nonlinear optical susceptibilities of glasses, Phys. Rev. B 11, 964 (1975)CrossRefGoogle Scholar
  26. 6.26
    S. Smolorz, F. Wise, N.F. Borrelli: Measurement of the nonlinear optical response of optical fiber materials by use of spectrally resolved two-beam coupling, Opt. Lett. 24, 1103 (1999)CrossRefGoogle Scholar
  27. 6.27
    R.H. Stolen, W.J. Tomlinson: Effect of the Raman part of the nonlinear refractive index on propagation of ultrashort optical pulses in fibers, J. Opt. Soc. Am. B 9, 565 (1992)CrossRefGoogle Scholar
  28. 6.28
    S. Santran, L. Canioni, L. Sarger, T. Cardinal, E. Fargin: Precise and absolute measurements of the complex third-order optical susceptibility, J. Opt. Soc. Am. B 21, 2180 (2004)CrossRefGoogle Scholar
  29. 6.29
    S. Montant, A.L. Calvez, E. Freysz, A. Ducasse, M. Couzi: Time-domain separation of nuclear and electronic contributions to the third-order nonlinearity in glasses, J. Opt. Soc. Am. B 15, 2802 (1998)CrossRefGoogle Scholar
  30. 6.30
    A. Royon, L. Canioni, B. Bousquet, V. Rodriguez, M. Couzi, C. Rivero, T. Cardinal, E. Fargin, M. Richardson, K. Richardson: Strong nuclear contribution to the optical Kerr effect in niobium oxide containing glasses, Phys. Rev. B 75, 104207 (2007)CrossRefGoogle Scholar
  31. 6.31
    D. Heiman, R.W. Hellwarth, D.S. Hamilton: Raman scattering and nonlinear refractive index measurements of optical glasses, J. Non-Cryst. Solids 34, 63 (1979)CrossRefGoogle Scholar
  32. 6.32
    A.A. Lipovskii, D.K. Tagantsev, A.A. Vetrov, O.V. Yanush: Raman spectroscopy and the origin of electrooptical Kerr phenomenon in niobium alkali-silicate glasses, Opt. Mater. 21, 749 (2003)CrossRefGoogle Scholar
  33. 6.33
    T. Cardinal, E. Fargin, G.L. Flem, S. Leboiteux: Correlations between structural properties of Nb2O5-NaPO3-Na2B4O7 glasses and non-linear optical activities, J. Non-Cryst. Solids 222, 228 (1997)Google Scholar
  34. 6.34
    C.V. Raman, K.S. Krishnan: A new type of secondary radiation, Nature 121, 501 (1928)CrossRefGoogle Scholar
  35. 6.35
    R.H. Stolen, E.P. Ippen: Raman gain in optical waveguides, Appl. Phys. Lett. 22(6), 276 (1973)CrossRefGoogle Scholar
  36. 6.36
    R. Schafer, J. Jungjohann: Raman amplification – longer wider, faster, cheaper, Compd. Semicond 7(2), 41 (2001)Google Scholar
  37. 6.37
    T.T. Basiev, A.A. Sobol, P.G. Zverev, L.I. Ivleva, V.V. Osiko, R.C. Powell: Raman spectroscopy of crystals for stimulated Raman scattering, Opt. Mater. 11, 307 (1999)CrossRefGoogle Scholar
  38. 6.38
    E.M. Dianov: Advances in Raman fibers, J. Lightwave Technol. 20(8), 1457 (2002)CrossRefGoogle Scholar
  39. 6.39
    F.L. Galeener: J.C.M. Jr., R.H. Geils, W.J. Mosby: The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5, Appl. Phys. Lett. 32(1), 34 (1978)CrossRefGoogle Scholar
  40. 6.40
    M.E. Lines: Absolute Raman intensities in glasses, I. Theory, J. Non-Cryst. Solids 89, 143 (1987)CrossRefGoogle Scholar
  41. 6.41
    M.E. Lines, A.E. Miller, K. Nassau, K.B. Lyons: Absolute Raman intensities in glasses, II. Germania-based heavy metal oxides and global criteria, J. Non-Cryst. Solids 89, 163 (1987)CrossRefGoogle Scholar
  42. 6.42
    A.E. Miller, K. Nassau, K.B. Lyons, M.E. Lines: The intensity of Raman scattering in glasses containing heavy metal oxides, J. Non-Cryst. Solids 99, 289 (1988)CrossRefGoogle Scholar
  43. 6.43
    D. Chang, S.V. Chernikov, M.J. Guy, J.R. Taylor, H.J. Kong: Efficient cascaded Raman generation and signal amplification at 1.3 \({\upmu}\)m in GeO2-doped single mode fibre, Opt. Commun. 142, 289 (1997)CrossRefGoogle Scholar
  44. 6.44
    H.S. Seo, K. Oh: Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration, Opt. Commun. 181, 145 (2000)CrossRefGoogle Scholar
  45. 6.45
    G.A. Thomas, D.A. Ackerman, P.R. Prucnal, S.L. Cooper: Physics in the whirlwind of optical communications, Phys. Today 53, 30–36 (2000)CrossRefGoogle Scholar
  46. 6.46
    J. Bromage, K. Rottwitt, M.E. Lines: A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles, IEEE Photon. Technol. Lett. 14(1), 24 (2002)CrossRefGoogle Scholar
  47. 6.47
    E.M. Dianov, M.V. Grekov, I.A. Bufetov, S.A. Vasiliev, O.I. Medvedkov, V.G. Plotnichenko, V.V. Koltashev, A.V. Belov, M.M. Bubnov, S.L. Semjonov, A.M. Prokhorov: CW high power 1.24 \({\upmu}\)m and 1.48 \({\upmu}\)m Raman laser based on low loss phosphosilicate fibre, Electron. Lett. 33(18), 1542 (1997)CrossRefGoogle Scholar
  48. 6.48
    E.M. Dianov, M.V. Grekov, I.A. Bufetov, V.M. Mashinsky, O.D. Sazhin, A.M. Prokhorov, G.G. Devyatykh, A.N. Guryanov, V.F. Khopin: Highly efficient 1.3 \({\upmu}\)m Raman fibre amplifier, Electron. Lett. 34(7), 669 (1998)CrossRefGoogle Scholar
  49. 6.49
    Z. Pan, S.H. Morgan, B.H. Long: Raman scattering cross-sections and non-linear optical response of lead borate glasses, J. Non-Cryst. Solids 185, 127 (1995)CrossRefGoogle Scholar
  50. 6.50
    A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, M. Shimizu: Ultra-wideband tellurite-based Raman fibre amplifier, Electron. Lett. 37(24), 1442 (2001)CrossRefGoogle Scholar
  51. 6.51
    R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, T. Cardinal: Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica, Opt. Lett. 28, 1126 (2003)CrossRefGoogle Scholar
  52. 6.52
    G. Dai, F. Tassone, A.L. Bassi, V. Russo, C.E. Bottani, F. D'Amore: TeO2-based glasses containing Nb2O5, TiO2, and WO3 for discrete Raman fiber amplification, Photon. Technol. Lett. 16(4), 1011 (2004)CrossRefGoogle Scholar
  53. 6.53
    V.G. Plotnichenko, V.V. Koltashev, V.O. Sokolov, E.M. Dianov, I.A. Grishin, M.F. Churbanov: Raman band intensities of tellurite glasses, Opt. Lett. 30, 1156 (2005)CrossRefGoogle Scholar
  54. 6.54
    R. Stegeman, C. Rivero, K. Richardson, G. Stegeman, P. Delfyett, Y. Guo, A. Pope, A. Schulte, T. Cardinal, P. Thomas, J.-C. Champarnaud-Mesjard: Raman gain measurements of thallium-tellurium oxide glasses, Opt. Express 13(4), 1144 (2005)CrossRefGoogle Scholar
  55. 6.55
    G.S. Murugan, T. Suzuki, Y. Ohishi: Tellurite glasses for ultrabroadband fiber Raman amplifiers, Appl. Phys. Lett. 86, 161109 (2005)CrossRefGoogle Scholar
  56. 6.56
    C. Rivero, K. Richardson, R. Stegeman, G. Stegeman, T. Cardinal, E. Fargin, M. Couzi: Characterization of the performance parameters of some new broadband glasses for Raman amplification, J. Glass Technol. 46(2), 80 (2005)Google Scholar
  57. 6.57
    S. Kim, T. Yoko: Nonlinear optical properties of TeO2-based glasses: MOx-TeO2 (M= Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses, J. Am. Ceram. Soc. 78, 1061 (1995)CrossRefGoogle Scholar
  58. 6.58
    C. Rivero, R. Stegeman, K. Richardson, G. Stegeman, G. Turri, M. Bass, P. Thomas, M. Udovic, T. Cardinal, E. Fargin, M. Couzi, H. Jain, A. Miller: Influence of modifier oxides on the structural and optical properties of binary TeO2 glasses, J. Appl. Phys. 101, 023526 (2007)CrossRefGoogle Scholar
  59. 6.59
    V. Rodriguez, G. Guery, M. Dussauze, F. Adamietz, T. Cardinal, K. Richardson: Raman gain in tellurite glass: How combination of IR, Raman, hyper-Raman and hyper-Rayleigh brings new understandings, J. Phys. Chem. C 120(40), 23144 (2016)CrossRefGoogle Scholar
  60. 6.60
    C. Rivero, R. Stegeman, D. Talaga, M. Couzi, T. Cardinal, K. Richardson, G. Stegeman: Resolved discrepancies between visible spontaneous Raman cross-section and direct near-infrared Raman gain measurements in TeO2-based glasses, Opt. Express 13(12), 4759 (2005)CrossRefGoogle Scholar
  61. 6.61
    M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino: Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers, J. Appl. Phys. 77(11), 5518 (1995)CrossRefGoogle Scholar
  62. 6.62
    P.A. Thielen, L.B. Shaw, P.C. Pureza, V.Q. Nguyen, J.S. Sanghera, I.D. Aggarwal: Small-core As-Se fiber for Raman amplification, Opt. Lett. 28(16), 1406 (2003)CrossRefGoogle Scholar
  63. 6.63
    T. Kohoutek, X. Yan, T.W. Shiosaka, S.N. Yannopoulos, A. Chrissanthopoulos, T. Suzuki, Y. Ohishi: Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers, J. Opt. Soc. Am. B 28(9), 2285 (2011)CrossRefGoogle Scholar
  64. 6.64
    R.E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L.B. Shaw, I.D. Aggarwal: Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers, J. Opt. Soc. Am. B 21(6), 1147 (2004)CrossRefGoogle Scholar
  65. 6.65
    I. Savelii, J.C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J.M. Dudley, J. Troles, L. Brilland, G. Renversez, F. Smektala: Suspended core tellurite glass optical fibers for infrared supercontinuum generation, Opt. Mater. 33, 1661 (2011)CrossRefGoogle Scholar
  66. 6.66
    R.R. Alfano, S.L. Shapiro: Emission in the region 4000 to 7000 Å via four-photon coupling in glass, Phys. Rev. Lett. 24, 584 (1970)CrossRefGoogle Scholar
  67. 6.67
    R.R. Alfano, S.L. Shapiro: Observation of selfphase modulation and small-scale filaments in crystals and glasses, Phys. Rev. Lett. 24, 592 (1970)CrossRefGoogle Scholar
  68. 6.68
    J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin: All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21(19), 1547 (1996)CrossRefGoogle Scholar
  69. 6.69
    J.M. Dudley, G. Genty, S. Coen: Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys. 78(4), 1135 (2006)CrossRefGoogle Scholar
  70. 6.70
    X. Jiang, N.Y. Joly, M.A. Finger, F. Babic, G.K.L. Wong, J.C. Travers, P.S.J. Russell: Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre, Nat. Photonics 9, 133 (2015)CrossRefGoogle Scholar
  71. 6.71
    M. Liao, X. Yan, Z. Duan, T. Suzuki, Y. Ohishi: Tellurite photonic nanostructured fiber, J. Lightwave Technol. 29(7), 1018 (2011)CrossRefGoogle Scholar
  72. 6.72
    M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, T. Suzuki, Y. Ohishi: Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber, Opt. Express 20(26), B574 (2012)CrossRefGoogle Scholar
  73. 6.73
    I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, F. Smektala: Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers, Opt. Express 20(24), 27083 (2012)CrossRefGoogle Scholar
  74. 6.74
    J. Picot-Clemente, C. Strutynski, F. Amrani, F. Désévédavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, F. Smektala: Enhanced supercontinuum generation in tapered tellurite suspended core fiber, Opt. Commun. 354, 374 (2015)CrossRefGoogle Scholar
  75. 6.75
    P.P. Domachuk, N.A. Wolchover, M. Cronin-Golomb, A. Wang, A.K. George, C.M.B. Cordeiro, J.C. Knight, F.G. Omenetto: Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs, Opt. Express 16, 7161 (2008)CrossRefGoogle Scholar
  76. 6.76
    U. Møller, Y. Yu, I. Kubat, C.R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, O. Bang: Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber, Opt. Express 23(3), 3282 (2015)CrossRefGoogle Scholar
  77. 6.77
    M. Boivin, M. El-Amraoui, Y. Ledemi, S. Morency, R. Vallee, Y. Messaddeq: Germanate-tellurite composite fibers with a high-contrast step-index design for nonlinear applications, Opt. Mater. Express 4(8), 1740 (2014)CrossRefGoogle Scholar
  78. 6.78
    C.R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang: Mid-infrared supercontinuum covering the 1.4–13.3 \({\upmu}\)m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre, Nat. Photonics 8, 830 (2014)CrossRefGoogle Scholar
  79. 6.79
    V.N. Denisov, B.N. Mavrin, V.B. Podobedov: Hyper-Raman scattering by vibrational excitation in crystals, glasses and liquids, Phys. Rep. 151(1), 1 (1987)CrossRefGoogle Scholar
  80. 6.80
    V. Rodriguez: New structural and vibrational opportunities combining Hyper-Rayleigh/hyper-Raman and Raman scattering in isotropic materials, J. Raman Spectrosc. 43(5), 627 (2012)CrossRefGoogle Scholar
  81. 6.81
    P. Guyot-Sionnest, Y.R. Shen: Bulk contribution in surface second-harmonic generation, Phys. Rev. B 38(12), 7985 (1988)CrossRefGoogle Scholar
  82. 6.82
    X. Wang, S. Fardad, S. Das, A. Salandrino, R. Hui: Polarization-based identification of bulk contributions in surface nonlinear optics, Phys. Rev. B 93, 161109 (2016)CrossRefGoogle Scholar
  83. 6.83
    F.J. Rodríguez, F.X. Wang, B.K. Canfield, S. Cattaneo, M. Kauranen: Multipolar tensor analysis of second-order nonlinear optical response of surface and bulk of glass, Opt. Express 15(14), 8695 (2007)CrossRefGoogle Scholar
  84. 6.84
    Y. Sasaki, Y. Ohmori: Phase-matched sum-frequency light generation in optical fibers, Appl. Phys. Lett. 39(6), 466 (1981)CrossRefGoogle Scholar
  85. 6.85
    R.A. Myers, N. Mukherjee, S.R.J. Brueck: Large second-order nonlinearity in poled fused silica, Opt. Lett. 16(22), 1732 (1991)CrossRefGoogle Scholar
  86. 6.86
    A. Okada, K. Ishii, K. Mito, K. Sasaki: Phase-matched second-harmonic generation in novel corona poled glass waveguides, Appl. Phys. Lett. 60, 2853 (1992)CrossRefGoogle Scholar
  87. 6.87
    P.G. Kazansky, A. Kamal, P.S. Russell: High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation, Opt. Lett. 18, 683 (1993)Google Scholar
  88. 6.88
    L.J. Henry, B.V. McGrath, T.G. Alley, J.J. Kester: Optical nonlinearity in fused silica by proton implantation, J. Opt. Soc. Am. B 13, 827 (1996)CrossRefGoogle Scholar
  89. 6.89
    U. Österberg, W. Margulis: Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber, Opt. Lett. 11(8), 516 (1986)CrossRefGoogle Scholar
  90. 6.90
    R.H. Stolen, H.W.K. Tom: Self-organized phase-matched harmonic generation in optical fibers, Opt. Lett. 12, 585 (1987)CrossRefGoogle Scholar
  91. 6.91
    F. Ouellette, K.O. Hill, D.C. Johnson: Light-induced erasure of self-organized \({\chi}\)(2) gratings in optical fibers, Opt. Lett. 13(6), 515 (1988)CrossRefGoogle Scholar
  92. 6.92
    V. Mizrahi, Y. Hibino, G. Stegeman: Polarization study of photoinduced second-harmonic generation in glass optical fibers, Opt. Commun. 78, 283 (1990)CrossRefGoogle Scholar
  93. 6.93
    T.J. Driscoll, N.M. Lawandy: Optically encoded second-harmonic generation in bulk silica-based glasses, J. Opt. Soc. Am. B 11(2), 355 (1994)CrossRefGoogle Scholar
  94. 6.94
    W. Margulis, F. Laurell, B. Lesche: Imaging the non linear grating in frequency doubling fibres, Nature 378(14), 699 (1995)CrossRefGoogle Scholar
  95. 6.95
    J.H. Kyung, N.M. Lawandy: Direct measurement of photoinduced charge distribution responsible for second-harmonic generation in glasses, Opt. Lett. 21(3), 186 (1996)CrossRefGoogle Scholar
  96. 6.96
    T. Komatsu: Design and control of crystallization in oxide glasses, J. Non-Cryst. Solids 428, 156 (2015)CrossRefGoogle Scholar
  97. 6.97
    X. He, C. Fan, B. Poumellec, Q. Liu, H. Zeng, F. Brisset, G. Chen, X. Zhao, M. Lancry: Size-controlled oriented crystallization in SiO2-based glasses by femtosecond laser irradiation, J. Opt. Soc. Am. B 31, 376 (2014)CrossRefGoogle Scholar
  98. 6.98
    A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, R. Kashyap: Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3-D integrated optics, Sci. Rep. 5, 10391 (2015)CrossRefGoogle Scholar
  99. 6.99
    J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, M. Lancry: Angular dependence of the second harmonic generation induced by femtosecond laser irradiation in silica-based glasses: Variation with writing speed and pulse energy, World J. Nano Sci. Eng. 5, 96 (2015)CrossRefGoogle Scholar
  100. 6.100
    M.B.J. Choi, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, M. Richardson: Three dimensional direct femtosecond laser writing of second-order nonlinearities in glass, Opt. Lett. 37, 1029 (2012)CrossRefGoogle Scholar
  101. 6.101
    G. Papon, N. Marquestaut, Y. Petit, A. Royon, M. Dussauze, V. Rodriguez, T. Cardinal, L. Canioni: Femtosecond single-beam direct laser poling of stable and efficient second-order nonlinear optical properties in glass, J. Appl. Phys. 115(11), 113103 (2014)CrossRefGoogle Scholar
  102. 6.102
    G. Papon, Y. Petit, N. Marquestaut, A. Royon, M. Dussauze, V. Rodriguez, T. Cardinal, L. Canioni: Fluorescence and second-harmonic generation correlative microscopy to probe space charge separation and silver cluster stabilization during direct laser writing in a tailored silver containing glass, Opt. Mater. Express 3(11), 1855 (2013)CrossRefGoogle Scholar
  103. 6.103
    N. Mukherjee, R.A. Myers, S.R.J. Brueck: Dynamics of second-harmonic generation in fused silica, J. Opt. Soc. Am. B 11, 665 (1994)CrossRefGoogle Scholar
  104. 6.104
    P.G. Kazansky, P.S.J. Russel: Thermally poled glass: Frozen-in electric field or oriented dipoles?, Opt. Commun. 110, 611 (1994)CrossRefGoogle Scholar
  105. 6.105
    T.G. Alley, S.R.J. Brueck, M. Wiedenbeck: Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica, J. Appl. Phys. 86(12), 6634 (1999)CrossRefGoogle Scholar
  106. 6.106
    A.L.C. Triques, I.C.S. Caralho, M.F. Moreira, H.R. Carvalho, R. Fischer, B. Lesche, W. Margullis: Time evolution of depletion region in poled silica, Appl. Phys. Lett. 82(18), 2948 (2003)CrossRefGoogle Scholar
  107. 6.107
    F.S.V. Pruneri, G. Bonfrate, P.G. Kazansky, G.M. Yang: Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation, Appl. Phys. Lett. 74(17), 2423 (1999)CrossRefGoogle Scholar
  108. 6.108
    J. Xu, X. Lu, H. Chen, L. Liu, W. Wang, C. Zhu, F. Gan: Second harmonic generation investigation on electric poling effects in fused silica, Opt. Mater. 8, 243 (1997)CrossRefGoogle Scholar
  109. 6.109
    E.S.Q. Mingxin, H. Keiichi, M. Toru: The thickness evolution of the second-order nonlinear layer in thermally poled fused silica, Opt. Commun. 189, 161 (2001)CrossRefGoogle Scholar
  110. 6.110
    D. Faccio, V. Pruneri, P.G. Kazansky: Dynamics of the second-order nonlinearity in thermally poled silica glass, Appl. Phys. Lett. 79(17), 2687 (2001)CrossRefGoogle Scholar
  111. 6.111
    A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, G. Martinelli: Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution, Appl. Phys. Lett. 83(17), 3623 (2003)CrossRefGoogle Scholar
  112. 6.112
    Y. Quiquempois, N. Godbout, S. Lacroix: Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity, Phys. Rev. A 65(4), 043816 (2002)CrossRefGoogle Scholar
  113. 6.113
    T.M. Proctor, P.M. Sutton: Static space-charge distributions with a single mobile charge carrier, J. Chem. Phys. 30(1), 212 (1959)CrossRefGoogle Scholar
  114. 6.114
    G.M.Y. Quiquempois, P. Dutherage, P. Bernage, P. Niay, M. Douay: Localisation of the induced second-order non-linearity within infrasil and suprasil thermally poled glasses, Opt. Comm. 176, 479 (2000)CrossRefGoogle Scholar
  115. 6.115
    M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, T. Cardinal: Thermal poling of optical glasses: Mechanisms and second-order optical properties, Int. J. Appl. Glass Sci. 3(4), 309 (2012)CrossRefGoogle Scholar
  116. 6.116
    S.H.-Y. Chen, Y.-H. Yang, Z.-W. Wang, C. T'sung Shih, H. Niu: Quasi-phase-matched second-harmonic generation in ge-ion implanted fused silica channel waveguide, Opt. Express 13, 7091 (2005)CrossRefGoogle Scholar
  117. 6.117
    K.A.W.G. Li, A.A. Said, M. Dugan, P. Bado: Quasi-phase matched second-harmonic generation through thermal poling in femtosecond laser-written glass waveguides, Opt. Express 17, 9442 (2009)CrossRefGoogle Scholar
  118. 6.118
    R.J.J. Fage-Pedersen, M. Kristensen: Planar glass devices for efficient periodic poling, Opt. Express 13, 8514 (2005)CrossRefGoogle Scholar
  119. 6.119
    R.J.J. Fage-Pedersen, M. Kristensen: Poled-glass devices: Influence of surfaces and interfaces, J. Opt. Soc. Am. B 24, 1075 (2007)CrossRefGoogle Scholar
  120. 6.120
    V. Pruneri, G. Bonfrate, P.G. Kazansky, D.J. Richardson, N.G. Broderick, J.P. de Sandro, C. Simonneau, P. Vidakovic, J.A. Levenson: Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers, Opt. Lett. 24, 208 (1999)CrossRefGoogle Scholar
  121. 6.121
    A. Strauß, U. Jauernig, V. Reichel, H. Bartelt: Generation of green light in a thermally poled silica fiber by quasi-phase-matched second harmonic generation, Optik–Int. J. Light Electron. Opt. 121(5), 490 (2010)CrossRefGoogle Scholar
  122. 6.122
    M. Fokine, L.E. Nilsson, Å. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, W. Margulis: Integrated fiber Mach–Zehnder interferometer for electro-optic switching, Opt. Lett. 27, 1643 (2002)CrossRefGoogle Scholar
  123. 6.123
    N. Myren, W. Margulis: All-fiber electrooptical mode-locking and tuning, IEEE Photonics Technol. Lett. 17, 2047 (2005)CrossRefGoogle Scholar
  124. 6.124
    H. An, S. Fleming: Investigating the effectiveness of thermally poling optical fibers with various internal electrode configurations, Opt. Express 20(7), 7436 (2012)CrossRefGoogle Scholar
  125. 6.125
    W. Margulis, O. Tarasenko, N. Myren: Who needs a cathode? creating a second-order nonlinearity by charging glass fiber with two anodes, Opt. Express 17, 15534 (2009)CrossRefGoogle Scholar
  126. 6.126
    J. Zhang, L. Qian: Real-time \({\chi}\)(2) evolution in twin-hole fiber during thermal poling and repoling, J. Opt. Soc. Am. B 26(7), 1412 (2009)CrossRefGoogle Scholar
  127. 6.127
    A. Camara, O. Tarasenko, W. Margulis: Study of thermally poled fibers with a two-dimensional model, Opt. Express 22(15), 17700 (2014)CrossRefGoogle Scholar
  128. 6.128
    W. Margulis, Z. Yu, M. Malmström, P. Rugeland, H. Knape, O. Tarasenko: High-speed electrical switching in optical fibers, Appl. Opt. 50(25), E65 (2011)CrossRefGoogle Scholar
  129. 6.129
    D.E. Carlson, K.W. Hang, G.F. Stockdale: Electrode “polarization” in alkali-containing glasses, J. Am. Ceram. Soc. 55, 337 (1972)CrossRefGoogle Scholar
  130. 6.130
    D.E. Carlson: Ion depletion of glass at a blocking anode: I, Theory and experimental results for alkali silicate glasses, J. Am. Ceram. Soc. 57, 291 (1974)CrossRefGoogle Scholar
  131. 6.131
    D.E. Carlson, K.W. Hang, G.F. Stockdale: Ion depletion of glass at a blocking anode: II, Properties of ion-depleted glasses, J. Am. Ceram. Soc. 57, 295 (1974)CrossRefGoogle Scholar
  132. 6.132
    D.E. Carlson: Anodic proton injection in glasses, J. Am. Ceram. Soc. 57, 461 (1974)CrossRefGoogle Scholar
  133. 6.133
    F.C. Garcia, I.C.S. Carvalho, E. Hering, W. Margulis, B. Lesche: Inducing a large second-order optical nonlinearity in soft glasses by poling, Appl. Phys. Lett. 72, 3252 (1998)CrossRefGoogle Scholar
  134. 6.134
    H. An, S. Fleming: Near-anode phase separation in thermally poled soda lime glass, Appl. Phys. Lett. 88(18), 181106 (2006)CrossRefGoogle Scholar
  135. 6.135
    H. An, S. Fleming: Second-order optical nonlinearity in thermally poled borosilicate glass, Appl. Phys. Lett. 89(18), 181111 (2006)CrossRefGoogle Scholar
  136. 6.136
    A. Malakho, M. Dussauze, E. Fargin, O. Bidault, V. Rodriguez, F. Adamietz, B. Poumellec: Effect of sodium to barium substitution on the space charge implementation in thermally poled glasses for nonlinear optical applications, J. Solid State Chem. 182(5), 1156 (2009)CrossRefGoogle Scholar
  137. 6.137
    P. Thamboon, D.M. Krol: Second-order optical nonlinearities in thermally poled phosphate glasses, J. Appl. Phys. 93(1), 32 (2003)CrossRefGoogle Scholar
  138. 6.138
    G. Guimbretière, M. Dussauze, V. Rodriguez, E.I. Kamitsos: Correlation between second-order optical response and structure in thermally poled sodium niobium-germanate glass, Appl. Phys. Lett. 97(17), 171103 (2010)CrossRefGoogle Scholar
  139. 6.139
    M. Dussauze, V. Rodriguez, L. Velli, C.P.E. Varsamis, E.I. Kamitsos: Polarization mechanisms and structural rearrangements in thermally poled sodium-alumino phosphate glasses, J. Appl. Phys. 107(4), 043505 (2010)CrossRefGoogle Scholar
  140. 6.140
    C.R. Mariappan, B. Roling: Mechanism and kinetics of Na+ ion depletion under the anode during electro-thermal poling of a bioactive glass, J. Non-Cryst. Solids 356(11–17), 720 (2010)CrossRefGoogle Scholar
  141. 6.141
    M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, F. Adamietz: Large second-harmonic generation of thermally poled sodium borophosphate glasses, Opt. Express 13, 4064 (2005)CrossRefGoogle Scholar
  142. 6.142
    M. Dussauze, E.I. Kamitsos, E. Fargin, V. Rodriguez: Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium-niobium borophosphate glasses, J. Phys. Chem. C(111), 14560 (2007)Google Scholar
  143. 6.143
    E.C. Ziemath, V.D. Araújo, C.A. Escanhoela: Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass, J. Appl. Phys. 104(5), 054912 (2008)CrossRefGoogle Scholar
  144. 6.144
    D. Moncke, M. Dussauze, E.I. Kamitsos, C.P.E. Varsamis: Thermal poling induced structural changes in sodium borosilicate glasses, Phys. Chem. Glasses 50(3), 229 (2009)Google Scholar
  145. 6.145
    M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, E.I. Kamitsos: How does thermal poling affect the structure of soda-lime glass?, J. Phys. Chem. C(114), 12754 (2010)Google Scholar
  146. 6.146
    M. Fabbriz, J.R. Senna: Models of ionic transport for silicon-glass anodic bonding, J. Electrochem. Soc. 155, G274 (2008)CrossRefGoogle Scholar
  147. 6.147
    P. Nitzsche, K. Lange, B. Schmidt, S. Grigull, U. Kreissig, B. Thomas, K. Herzog: Ion drift processes in pyrex-type alkali-borosilicate glass during anodic bonding, J. Electrochem. Soc. 145, 1755 (1998)CrossRefGoogle Scholar
  148. 6.148
    B.S.B. Schmidt, P. Nitzsche, K. Lange, S. Grigull, U. Kreissig, B. Thomas, K. Herzog: In situ investigation of ion drift processes in glass during anodic bonding, Sens. Actuators A 67, 191 (1998)CrossRefGoogle Scholar
  149. 6.149
    U.K. Krieger, W.A. Lanford: Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: Experimental, J. Non-Cryst. Solids 102, 50 (1988)CrossRefGoogle Scholar
  150. 6.150
    C. Corbari, L.C. Ajitdoss, I.C.S. Carvalho, O. Deparis, F.P. Mezzapesa, P.G. Kazansky, K. Sakaguchi: The problem of achieving high second-order nonlinearities in glasses: The role of electronic conductivity in poling of high index glasses, J. Non-Cryst. Solids 356(50/51), 2742 (2010)CrossRefGoogle Scholar
  151. 6.151
    J. Zakel, M. Balabajew, B. Roling: On the mechanism of field-induced mixed ionic–electronic transport during electro-thermal poling of a bioactive sodium–calcium phosphosilicate glass, Solid State Ion 265, 1 (2014)CrossRefGoogle Scholar
  152. 6.152
    C. McLaren, M. Balabajew, M. Gellert, B. Roling, H. Jain: Depletion layer formation in alkali silicate glasses by electro-thermal poling, J. Electrochem. Soc. 163(9), H809 (2016)CrossRefGoogle Scholar
  153. 6.153
    T. Cremoux, M. Dussauze, E. Fargin, T. Cardinal, D. Talaga, F. Adamietz, V. Rodriguez: Trapped molecular and ionic species in poled borosilicate glasses: Toward a rationalized description of thermal poling in glasses, J. Phys. Chem. C 118(7), 3716 (2014)CrossRefGoogle Scholar
  154. 6.154
    A.V. Redkov, V.G. Melehin, A.A. Lipovskii: How does thermal poling produce interstitial molecular oxygen in silicate glasses?, J. Phys. Chem. C 119(30), 17298 (2015)CrossRefGoogle Scholar
  155. 6.155
    T. Suzuki, J. Anzai, Y. Takimoto, K. Uraji, K. Yamamoto, J. Nishii: Migration behavior of network-modifier cations at glass surface during electrical poling, J. Non-Cryst. Solids 452, 125 (2016)CrossRefGoogle Scholar
  156. 6.156
    H. Takagi: S.-i. Miyazawa, M. Takahashi, R. Maeda: Electrostatic imprint process for glass, Appl. Phys. Express 1, 024003 (2008)CrossRefGoogle Scholar
  157. 6.157
    P. Brunkov, V. Goncharov, V. Melehin, A. Lipovskii, M. Petrov: Submicron surface relief formation using thermal poling of glasses, E-J. Surf. Sci. Nanotechnol. 7, 617 (2009)CrossRefGoogle Scholar
  158. 6.158
    A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, H. Graener: Metallodielectric two-dimensional photonic structures made by electric-field microstructuring of nanocomposite glasses, Adv. Mater. 17(24), 2983 (2005)CrossRefGoogle Scholar
  159. 6.159
    A.A. Lipovskii, V.V. Rusan, D.K. Tagantsev: Imprinting phase/amplitude patterns in glasses with thermal poling, Solid State Ion. 181(17/18), 849 (2010)CrossRefGoogle Scholar
  160. 6.160
    A.V. Redkov, V.V. Zhurikhina, A.A. Lipovskii: Formation and self-arrangement of silver nanoparticles in glass via annealing in hydrogen: the model, J. Non-Cryst. Solids 376, 152 (2013)CrossRefGoogle Scholar
  161. 6.161
    A.N. Kamenskii, I.V. Reduto, V.D. Petrikov, A.A. Lipovskii: Effective diffraction gratings via acidic etching of thermally poled glass, Opt. Mater. 62, 250 (2016)CrossRefGoogle Scholar
  162. 6.162
    L.A.H. Fleming, D.M. Goldie, A. Abdolvand: Imprinting of glass, Opt. Mater. Express 5(8), 1674 (2015)CrossRefGoogle Scholar
  163. 6.163
    P.N. Brunkov, V.G. Melekhin, V.V. Goncharov, A.A. Lipovskii, M.I. Petrov: Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites, Techn. Phys. Lett. 34(12), 1030 (2008)CrossRefGoogle Scholar
  164. 6.164
    G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K.L.N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, E. Fargin: Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling, J. Appl. Phys. 118(4), 043105 (2015)CrossRefGoogle Scholar
  165. 6.165
    V.R.M. Dussauze, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, E. Fargin: Accurate second harmonic generation microimprinting in glassy oxide materials, Adv. Opt. Mater. 4(6), 929 (2016)CrossRefGoogle Scholar
  166. 6.166
    K. Sokolov, V. Melehin, M. Petrov, V. Zhurikhina, A. Lipovskii: Spatially periodical poling of silica glass, J. Appl. Phys. 111(10), 104307 (2012)CrossRefGoogle Scholar
  167. 6.167
    H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, K. Kamiya: 3rd-harmonic generation from some chalcogenide glasses, J. Am. Ceram. Soc. 73(6), 1794 (1990)CrossRefGoogle Scholar
  168. 6.168
    M. Asobe, T. Kanamori, K. Kubodera: Ultrafast all-optical switching using highly nonlinear chalcogenide glass-fiber, IEEE Photonics Technol. Lett. 4(4), 362 (1992)CrossRefGoogle Scholar
  169. 6.169
    F. Smektala, C. Quemard: Chalcogenide glasses with large non-linear refractive indices, J. Non-Cryst. Solids 239(1–3), 139 (1998)CrossRefGoogle Scholar
  170. 6.170
    K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, M. Minakata: Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching, Opt. Lett. 29(3), 265 (2004)CrossRefGoogle Scholar
  171. 6.171
    D.I. Yeom, E.C. Maegi, M.R.E. Lamont, M.A.F. Roelens, L. Fu, B.J. Eggleton: Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires, Opt. Lett. 33(7), 660 (2008)CrossRefGoogle Scholar
  172. 6.172
    M. Guignard, V. Nazabal, F. Smektala, J.L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, Y. Quiquempois: Chalcogenide glasses based on germanium disulfide for second harmonic generation, Adv. Funct. Mater. 17(16), 3284 (2007)CrossRefGoogle Scholar
  173. 6.173
    W. Liu, Q.M. Zhang, L. Liu, L. Xu, Y. Xu, G. Chen: Enhancement of second-order optical nonlinearity in photo-darkened Ge25Sb10S65 chalcogenide glass by femtosecond laser light, Opt. Commun. 282(10), 2081 (2009)CrossRefGoogle Scholar
  174. 6.174
    R. Jing, Y. Guang, Z. Huidan, C. Guorong, K. Tanaka, K. Fujita, S. Murai, Y. Tsujiie: Second-harmonic generation in thermally poled chalcohalide glass, Opt. Lett. 31(23), 3492 (2006)CrossRefGoogle Scholar
  175. 6.175
    G. Dong, H. Tao, X. Xiao, C. Lin, X. Zhao, S. Mao: Mechanism of electron beam poled SHG in 0.95GeS\({}_{2}\cdot\)0.05In2S3 chalcogenide glasses, J. Phys. Chem. Solids 68(2), 158 (2007)CrossRefGoogle Scholar
  176. 6.176
    H. Zeghlache, M. Guignard, A. Kudlinski, Y. Quiquempois, G. Martinelli, V. Nazabal, F. Smektala: Stabilization of the second-order susceptibility induced in a sulfide chalcogenide glass by thermal poling, J. Appl. Phys. 101(8), 084905 (2007)CrossRefGoogle Scholar
  177. 6.177
    S. Gu, Z. Ma, H. Tao, C. Lin, H. Hu, X. Zhao, Y. Gong: Second-harmonic generation in the thermal/electrical poling (100-x)GeS2\({\cdot}\)x(0.5Ga 2S3\({\cdot}\)0.5CdS) chalcogenide glasses, J. Phys. Chem. Solids 69(1), 97 (2008)CrossRefGoogle Scholar
  178. 6.178
    Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G.S. Stegeman: Lacroix: Second-order nonlinear susceptibility in As2S3 chalcogenide thin glass films, Electron. Lett. 36(8), 733 (2000)CrossRefGoogle Scholar
  179. 6.179
    W.T. Shoulders, J. Novak, M. Dussauze, J.D. Musgraves, K. Richardson: Thermal poling behavior and SHG stability in arsenic-germanium sulfide glasses, Opt. Mater. Express 3(6), 700 (2013)CrossRefGoogle Scholar
  180. 6.180
    M. Dussauze, X. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, F. Smektala: Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses, Opt. Mater. Express 2(1), 45 (2012)CrossRefGoogle Scholar
  181. 6.181
    K. Shimakawa, S. Inami, S.R. Elliott: Reversible photoinduced change of photoconductivity in amorphous chalcogenide films, Phys. Rev. B 42(18), 11857 (1990)CrossRefGoogle Scholar
  182. 6.182
    K. Shimakawa, S. Inami, T. Kato, S.R. Elliott: Origin of photoinduced metastable defects in amorphous chalcogenides, Phys. Rev. B 46(16), 10062 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Molecular SciencesUniversity of BordeauxTalenceFrance
  2. 2.Institute for Condensed Matter Chemistry of BordeauxUniversity of BordeauxPessacFrance

Personalised recommendations