Advertisement

Glasses and Glass-Ceramics for Solid-State Battery Applications

  • Virginie VialletEmail author
  • Vincent Seznec
  • Akitoshi Hayashi
  • Masahiro Tatsumisago
  • Annie Pradel
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

This chapter reviews investigations carried out in the last decades to synthesize and characterize ion conducting glasses and glass-ceramics and further use them as solid electrolytes in all-solid-state batteries.

First, the focus is put on materials, either \(\mathrm{Li^{+}}\), \(\mathrm{Na^{+}}\) or \(\mathrm{Ag^{+}}\) conducting ones, with the most striking points being the discovery of ion conducting chalcogenide glasses in the 1980s, the elaboration of fast ion conducting glass-ceramics with the introduction of mechanical alloying techniques in the 1990s, and more recently the renewed interest in \(\mathrm{Na^{+}}\) conducting glasses and glass-ceramics.

The second part of the chapter focuses on the development of all-solid-state batteries, Li-ion and Li\(/\)S batteries and to a lesser extent \(\mathrm{Na^{+}}\) and \(\mathrm{Ag^{+}}\)-ion batteries. It is shown that the performance of the batteries relies on the development of optimized composite electrodes comprising the electrolyte, an active material and a conductive additive. The review sheds light on the key parameters that have to be considered, including the choice of compositions of active material and conductive additive, coating of electrode by the electrolyte, coating of the electrolyte, ratio of the components, homogenization of the mixture and compaction of the powders.

References

  1. 50.1
  2. 50.2
    K. Takada, N. Aotani, K. Iwamoto, S. Kondo: Solid state lithium battery with oxysulfide glass, Solid State Ion 86–88, 877 (1996)CrossRefGoogle Scholar
  3. 50.3
    R. Komiya, A. Hayashi, H. Morimoto, M. Tatsumisago, T. Minami: Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100-x)(0.6Li2S\(\cdot{}\)0.4SiS2) xLi4SiO4 obtained by mechanochemical synthesis, Solid State Ion. 140, 83 (2001)CrossRefGoogle Scholar
  4. 50.4
    N. Machida, H. Maeda, H. Peng, T. Shigematsu: All-solid-state lithium battery with LiCo0.3Ni0.7O2 fine powder as cathode materials with an amorphous sulfide electrolyte, J. Electrochem. Soc. 149, A688 (2002)CrossRefGoogle Scholar
  5. 50.5
    J.-M. Tarascon, M. Armand: Issues and challenges facing rechargeable lithium batteries, Nature 414, 359–367 (2001)CrossRefGoogle Scholar
  6. 50.6
    Y. Nishi: Lithium ion secondary batteries; past 10 years and the future, J. Power Sources 100, 101–106 (2001)CrossRefGoogle Scholar
  7. 50.7
    M. Armand, J.-M. Tarascon: Building better batteries, Nature 451, 652–657 (2008)CrossRefGoogle Scholar
  8. 50.8
    W. Li, J.R. Dahn, D.S. Wainwright: Rechargeable lithium batteries with aqueous electrolytes, Science 264, 1115–1118 (1994)CrossRefGoogle Scholar
  9. 50.9
    T. Minami, M. Tatsumisago, M. Wakihara, C. Iwakura, S. Kohgiya, I. Tanaka (Eds.): Solid State Ionics for Batteries (Springer, Tokyo 2005)Google Scholar
  10. 50.10
    K. Kariatsumari: Toyota announces 4-layer all-solid-state battery, http://techon.nikkeibp.co.jp/english/NEWS_EN/20101122/187553/ (2010)
  11. 50.11
    Toyota: Key technologies for electric motorization—Promoting familiarity of electric-powered vehicles, http://www.toyota-global.com/innovation/environmental_technology/keytech/ (2017)
  12. 50.12
    M. Luleva: Toyota's new all-solid-state battery: The power of “green vehicles”, https://www.greenoptimistic.com/toyotas-new-all-solid-state-battery-the-power-of-green-vehicles-20120927/#.WfhN1dXiapo (2012)
  13. 50.13
  14. 50.14
    B. Schmitt: Ultrafast-charging solid-state EV batteries around the corner, Toyota confirms, https://www.forbes.com/sites/bertelschmitt/2017/07/25/ultrafast-charging-solid-state-ev-batteries-around-the-corner-toyota-confirms/2/#3e92b11c69ea (2017)
  15. 50.15
    M. Tisshaw: BMW readies radical battery technology for 2026 launch, https://www.autocar.co.uk/car-news/industry/bmw-readies-radical-battery-technology-2026-launch (2017)
  16. 50.16
    E. Treacy: Electric vehicle boom: ICE-ing the combustion engine, Comment of the day, http://www.fullertreacymoney.com/general/electric-vehicle-boom-ice-ing-the-combustion-engine-/ (2017)
  17. 50.17
    J. Cao, R. He, T. Kyu: Fire retardant, superionic solid state polymer electrolyte membranes for lithium ion batteries, Curr. Opin. Chem. Eng. 15, 68–75 (2017)CrossRefGoogle Scholar
  18. 50.18
    J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M.J. Choi, H.Y. Chung, S. Park: A review of lithium and non-lithium based solid state batteries, J. Power Sources 282, 299–322 (2015)CrossRefGoogle Scholar
  19. 50.19
    N.J. Dudney, W.C. West, J. Nanda (Eds.): Handbook of Solid State Batteries, 2nd edn. (World Scientific, Singapore 2015) p. 836Google Scholar
  20. 50.20
    C. Julien, G.A. Nazri: Solid State Batteries: Materials Design and Optimization (Kluwer Academic, Boston 1994) p. 629CrossRefGoogle Scholar
  21. 50.21
    K. Takada: Progress and prospective of solid-state lithium batteries, Acta Mater. 61, 759–770 (2013)CrossRefGoogle Scholar
  22. 50.22
    Y. Kato, K. Kawamoto, R. Kanno, M. Hirayama: Discharge performance of all-solid-state battery using a lithium superionic conductor Li10GeP2S12, Electrochemistry 80, 749–751 (2012)CrossRefGoogle Scholar
  23. 50.23
    J.W. Fergus: Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources 195, 4554–4569 (2010)CrossRefGoogle Scholar
  24. 50.24
    N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Matsui: A lithium superionic conductor, Nat. Mater. 10, 682–686 (2011)CrossRefGoogle Scholar
  25. 50.25
    Y. Yoon, C. Park, J. Kim, D. Shin: Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries, J. Power Sources 226, 186–190 (2013)CrossRefGoogle Scholar
  26. 50.26
    M. Thackery, C. Wolverton, E.D. Isaacs: Electrical energy storage for transportation---approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci. 5, 7854–7863 (2012)CrossRefGoogle Scholar
  27. 50.27
    N. Yabuuchi, T. Ohzuku: Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries, J. Power Sources 119–121, 171 (2003)CrossRefGoogle Scholar
  28. 50.28
    R.J. Gummow, A. de Kock, M.M. Thackeray: Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells, Solid State Ion. 69, 59 (1994)CrossRefGoogle Scholar
  29. 50.29
    A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144, 1188–1194 (1997)CrossRefGoogle Scholar
  30. 50.30
    C. Liu, Z.G. Neale, G. Cao: Understanding electrochemical potentials of cathode materials in rechargeable batteries, Mater. Today 19, 109–123 (2016)CrossRefGoogle Scholar
  31. 50.31
    J.B. Goodenough, K.-S. Park: The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc. 135(4), 1167–1176 (2013)CrossRefGoogle Scholar
  32. 50.32
    V. Thangadurai, W. Weppner: Recent progress in solid oxide and lithium ion conducting electrolytes research, Ionics 12, 81–92 (2006)CrossRefGoogle Scholar
  33. 50.33
    R.C. Agrawal, G.P. Pandey: Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview, J. Phys. D 41, 1–18 (2008)CrossRefGoogle Scholar
  34. 50.34
    H. Park, T. Yoon, J. Mun, J.H. Ryu, J.J. Kim, S.M. Oh: A comparative study on thermal stability of two solid electrolyte interphase (SEI) films on graphite negative electrode, J. Electrochem. Soc. 160, A1539–A1543 (2013)CrossRefGoogle Scholar
  35. 50.35
    R.A. Huggins: Simple method to determine electronic and ionic components of the conductivity in mixed conductors: A review, Ionics 8(3/4), 300–313 (2002)CrossRefGoogle Scholar
  36. 50.36
    J.B. Wagner, C. Wagner: Electrical conductivity measurements on cuprous halides, J. Chem. Phys. 26, 1597–1601 (1957)CrossRefGoogle Scholar
  37. 50.37
    I. Riess: Review of the limitation of the Hebb-Wagner polarization method for measuring partial conductivities in mixed ionic electronic conductors, Solid State Ion. 91(3/4), 221–232 (1996)CrossRefGoogle Scholar
  38. 50.38
    E. Robinel, A. Kone, M.J. Duclot, J.L. Souquet: Silver sulfide based glasses: (II). Electrochemical properties of GeS2-Ag2S-Agl glasses: Transference number measurement and redox stability range, J Non-Cryst. Solids 57(1), 59–70 (1983)CrossRefGoogle Scholar
  39. 50.39
    Y.-S. Hu: Getting solid, Nat. Energy 1(16042), 999999 (2016),  https://doi.org/10.1038/nenergy.2016.42CrossRefGoogle Scholar
  40. 50.40
    D. Kunze: Fast Ion Transport in Solids. Solid State Batteries and Devices, ed. by W.V. Gool (North Holland, Amsterdam 1973) p. 495Google Scholar
  41. 50.41
    B. Barrau, A. Kone, M. Ribes, J.L. Souquet, M. Maurin: La conductivité électrique des verres appartenant au système monosulfure de sodium disulfure de germanium, C.R. Hebd. Seances Acad. Sci. C 287, 43 (1978)Google Scholar
  42. 50.42
    B. Barrau, J.M. Latour, D. Ravaine, M. Ribes: Synthèse et étude des propriétés électriques de nouveaux verres à conductivité ionique élevée, Proc. Conference on Science of Materials and Energy Problems (Brussels 1977), Silic. Ind. 12, 275 (1979)Google Scholar
  43. 50.43
    M. Ribes, D. Ravaine, J.L. Souquet, M. Maurin: Synthese, structure et conduction ionique de nouveaux verres a base de sulfures, Rev. Chim. Minér. 16, 339 (1979)Google Scholar
  44. 50.44
    M. Ribes, B. Barrau, J.L. Souquet: Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2S-XS2 (X = Si; Ge), Na2S-P2S5 and Li2S-GeS2 systems, J. Non-Cryst. Solids 38/39, 271 (1980)CrossRefGoogle Scholar
  45. 50.45
    J.-P. Malugani, B. Fahys, R. Mercier, G. Robert, J.P. Duchange, S. Baudry, M. Broussely, J.P. Gabano: De nouveaux verres conducteurs par l'ion lithium et leurs applications dans des générateurs electrochimiques, Solid State Ion. 9/10, 659–665 (1983)CrossRefGoogle Scholar
  46. 50.46
    J. Akridge, H. Vourlis: Solid state batteries using vitreous solid electrolytes, Solid State Ion. 18/19, 1082–1087 (1986)CrossRefGoogle Scholar
  47. 50.47
    J. Akridge, H. Vourlis: Performance of Li/TiS2 solid state batteries using phosphorous chalcogenide network former glasses as solid electrolyte, Solid State Ion. 28/30, 841–846 (1988)CrossRefGoogle Scholar
  48. 50.48
    A. Levasseur, M. Menetrier, R. Dormoy, G. Meunier: Solid state microbatteries, Mater. Sci. Eng. B 3, 5–12 (1989)CrossRefGoogle Scholar
  49. 50.49
    M. Tatsumisago, A. Hayashi: Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries, Solid State Ion. 225, 342–345 (2012)CrossRefGoogle Scholar
  50. 50.50
    C.A. Angell: Dynamic processes in ionic glasses, Chem. Rev. 90, 523 (1990)CrossRefGoogle Scholar
  51. 50.51
    M. Tatsumisago, Y. Shinkuma, T. Minami: Stabilization of superionic \(\alpha\)-Agl at room temperature in a glass matrix, Nature 354, 217–218 (1991)CrossRefGoogle Scholar
  52. 50.52
    A. Hayashi, Y. Ishikawa, S. Hama, T. Minami, M. Tatsumisago: Fast lithium-ion conducting glass-ceramics in the system Li2S-SiS2-P2S5, Electrochem. Solid State Lett. 6, A47–A49 (2003)CrossRefGoogle Scholar
  53. 50.53
    M. Tatsumisago, M. Nagao, A. Hayashi: Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries, J. Asian Ceram. Soc. 1, 17–25 (2013)CrossRefGoogle Scholar
  54. 50.54
    J. Fu: Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5, Solid State Ion. 96, 195–200 (1997)CrossRefGoogle Scholar
  55. 50.55
    J. Fu: Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-GeO2-P2O5, Solid State Ion. 104, 191–194 (1997)CrossRefGoogle Scholar
  56. 50.56
    F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: New, highly ion-conductive crystals precipitated from Li2S–P2S5 Glasses, Adv. Mater. 17, 918–921 (2005)CrossRefGoogle Scholar
  57. 50.57
    A. Hayashi, K. Minami, M. Tatsumisago: High lithium ion conduction of sulfide glass-based solid electrolytes and their application to all-solid-state batteries, J. Non-Cryst. Solids 355(37–42), 1919 (2009)CrossRefGoogle Scholar
  58. 50.58
    P.E. Doherty, D.W. Lee, R.S. Davis: Direct observation of the crystallization of Li2O-Al2O3-SiO2 glasses containing TiO2, J. Am. Ceram. Soc. 50, 77 (1967)CrossRefGoogle Scholar
  59. 50.59
    Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno: High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy 1, 16030 (2016)CrossRefGoogle Scholar
  60. 50.60
    R. Mercier, J.-P. Malugani, B. Fahys, G. Robert: Superionic conduction in Li2S-P2S5-LiI-glasses, Solid State Ion. 5, 663–666 (1981)CrossRefGoogle Scholar
  61. 50.61
    S. Ujiie, A. Hayashi, M. Tatsumisago: Preparation and ionic conductivity of (100-x)(0.8Li2S\(\cdot{}\)0.2P2S5)\(\cdot{}\)xLiI glass–ceramic electrolytes, J. Solid State Electrochem. 17(3), 675 (2013)CrossRefGoogle Scholar
  62. 50.62
    H. Wada, M. Menetrier, A. Levasseur, P. Hagenmuller: Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses, Mater. Res. Bull. 18(2), 189 (1983)CrossRefGoogle Scholar
  63. 50.63
    M. Ménétrier, A. Levasseur, C. Delmas, J.F. Audebert, P. Hagenmüller: New secondary batteries for room temperature applications using a vitreous electrolyte, Solid State Ion. 14(3), 257 (1984)CrossRefGoogle Scholar
  64. 50.64
    A. Pradel, M. Ribes: Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching, Solid State Ion. 18/19, 351 (1986)CrossRefGoogle Scholar
  65. 50.65
    J.H. Kennedy, Z. Zhang: Preparation and electrochemical properties of the SiS2-P2S5-Li2S glass coformer system, J. Electrochem. Soc. 135(8), C396 (1988)Google Scholar
  66. 50.66
    J.H. Kennedy, Y. Yang: Glass-forming region and structure in SiS2-Li2S-LiX (X = Br, I), J. Solid State Chem. 69(2), 252 (1987)CrossRefGoogle Scholar
  67. 50.67
    Z.M. Zhang, J.H. Kennedy: Synthesis and characterization of the B2S3-Li2S, the P2S5-Li2S and the B2S3-P2S5-Li2S glass systems, Solid State Ion. 38(3/4), 217–224 (1990)CrossRefGoogle Scholar
  68. 50.68
    S. Kondo, K. Takada: New lithium ion conductors based on Li2S-SiS2 system, Solid State Ionics 53–56, 1183 (1992)CrossRefGoogle Scholar
  69. 50.69
    N. Aotani, K. Iwamoto, K. Takada, S. Kondo: Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4-Li2S-SiS2, Solid State Ion. 68(1/2), 35 (1994)CrossRefGoogle Scholar
  70. 50.70
    K. Hirai, M. Tatsumisago, T. Minami: Thermal and electrical properties of rapidly quenched glasses in the systems Li2S-SiS2-LixMOy (LixMOy= Li4SiO4, Li2SO4), Solid State Ion. 78(3/4), 269 (1995)CrossRefGoogle Scholar
  71. 50.71
    M. Tatsumisago, K. Hirai, T. Minami, M. Takahashi: Preparation and characterisation of superionic Li2S-SiS2-Li4GeO4 glasses, Phys. Chem. Glasses 38(2), 63 (1997)Google Scholar
  72. 50.72
    A. Hayashi, M. Tatsumisago, T. Minami: Electrochemical properties for the lithium ion conductive (100-x)(0.6Li2S\(\cdot{}\)0.4SiS2)\(\cdot{}\)xLi4SiO4 oxysulfide glasses, J. Electrochem. Soc. 146(9), 3472 (1999)CrossRefGoogle Scholar
  73. 50.73
    M. Tatsumisago, N. Machida, T. Minami: Mixed anion effect in conductivity of rapidly quenched Li4SiO4-Li3BO3 glasses, J. Ceram. Soc. Jpn. 95, 197–201 (1987)Google Scholar
  74. 50.74
    A. Yamauchi, A. Sakuda, A. Hayashi, M. Tatsumisago: Preparation and ionic conductivities of (100-x)(0.75Li2S\(\cdot{}\)0.25P2S5)\(\cdot{}\)xLiBH4 glass electrolytes, J. Power Sources 244, 707 (2013)CrossRefGoogle Scholar
  75. 50.75
    H. Morimoto, H. Yamashita, M. Tatsumisago, T. Minami: Mechanochemical synthesis of new amorphous materials of 60Li2S\(\cdot{}\)40SiS2 with high lithium ion conductivity, J. Am. Ceram. Soc. 82(5), 1352 (1999)CrossRefGoogle Scholar
  76. 50.76
    H. Morimoto, H. Yamashita, M. Tatsumisago, T. Minami: Mechanochemical synthesis of the high lithium ion conductive amorphous materials in the systems Li2S-SiS2 and Li2S-SiS2-Li4SiO4, J. Ceram. Soc. Jpn. 108(2), 128 (2000)CrossRefGoogle Scholar
  77. 50.77
    M. Tatsumisago, H. Yamashita, A. Hayashi, H. Morimoto, T. Minami: Preparation and structure of amorphous solid electrolytes based on lithium sulfide, J. Non-Cryst. Solids 274(1–3), 30 (2000)CrossRefGoogle Scholar
  78. 50.78
    A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, T. Minami: Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling, J. Am. Ceram. Soc. 84(2), 477 (2001)CrossRefGoogle Scholar
  79. 50.79
    J.E. Trevey, J.R. Gilsdorf, S.W. Miller, S.-H. Lee: Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries, Solid State Ion. 214, 25–30 (2012)CrossRefGoogle Scholar
  80. 50.80
    A. Hayashi, S. Hama, T. Minami, M. Tatsumisago: Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses, Electrochem. Commun. 5(2), 111 (2003)CrossRefGoogle Scholar
  81. 50.81
    M. Tatsumisago, S. Hama, A. Hayashi, H. Morimoto, T. Minami: New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S–P2S5 glasses, Solid State Ion. 154/155, 635–640 (2002)CrossRefGoogle Scholar
  82. 50.82
    M. Tatsumisago: Glassy materials based on Li2S for all-solid-state lithium secondary batteries, Solid State Ion. 175, 13–18 (2004)CrossRefGoogle Scholar
  83. 50.83
    A. Sakuda, A. Hayashi, M. Tatsumisago: Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery, Sci. Rep. 3(2261), 1–5 (2013)Google Scholar
  84. 50.84
    F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: High lithium ion conducting glass-ceramics in the system Li2S–P2S5, Solid State Ion. 177(26–32), 2721 (2006)CrossRefGoogle Scholar
  85. 50.85
    H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino, S. Adams, K. Minami, A. Hayashi, M. Tatsumisago: Crystal structure of a superionic conductor, Li7P3S11, Solid State Ion. 178(15–18), 1163 (2007)CrossRefGoogle Scholar
  86. 50.86
    K. Minami, A. Hayashi, S. Ujiie, M. Tatsumisago: Structure and properties of Li2S–P2S5–P2S3 glass and glass–ceramic electrolytes, J. Power Sources 189(1), 651 (2009)CrossRefGoogle Scholar
  87. 50.87
    K. Minami, F. Mizuno, A. Hayashi, M. Tatsumisago: Structure and properties of the 70Li2S\(\cdot{}\)(30–x)P2S5\(\cdot{}\)xP2O5 oxysulfide glasses and glass–ceramics, J. Non-Cryst. Solids 354(2–9), 370 (2008)CrossRefGoogle Scholar
  88. 50.88
    K. Minami, A. Hayashi, M. Tatsumisago: Preparation and characterization of superionic conducting Li7P3S11 crystal from glassy liquids, J. Ceram. Soc. Jpn 118, 305–308 (2010)CrossRefGoogle Scholar
  89. 50.89
    H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere, Solid State Ion. 182, 116–119 (2011)CrossRefGoogle Scholar
  90. 50.90
    T. Ohtomo, A. Hayashi, M. Tatsumisago, K. Kawamoto: Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling, J. Non-Cryst. Solids 364, 57–61 (2013)CrossRefGoogle Scholar
  91. 50.91
    A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama, M. Tatsumisago: Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries, J. Alloys Compd. 591, 247–250 (2014)CrossRefGoogle Scholar
  92. 50.92
    A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama: Improvement of chemical stability of Li3PS4glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles, J. Mater. Chem. A 1, 6320–6326 (2013)CrossRefGoogle Scholar
  93. 50.93
    A. Weisbach: Argyrodit, ein neues Silbererz, Neues Jahrb. Mineral. Geol. Paläontol. 2, 67–71 (1886), http://rruff.info/uploads/Neues_Jahrbuch_fur_Mineralogie_Geologi_1884_67.pdfGoogle Scholar
  94. 50.94
    W.F. Kuhs, R. Nitsche, K. Scheunemann: The argyrodites—A new family of tetrahedrally close-packed structures, Mater. Res. Bull. 14(2), 241 (1979)CrossRefGoogle Scholar
  95. 50.95
    H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiß, M. Schlosser: Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility, Angew. Chem. Int. Ed. 47(4), 755 (2008)CrossRefGoogle Scholar
  96. 50.96
    R.P. Rao, N. Sharma, V.K. Peterson, S. Adams: Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes, J. Solid State Electrochem. 16, 1807–1813 (2012)CrossRefGoogle Scholar
  97. 50.97
    R.P. Rao, N. Sharma, V.K. Peterson, S. Adams: Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction, Solid State Ion. 230, 72–76 (2013)CrossRefGoogle Scholar
  98. 50.98
    S. Boulineau, M. Courty, J.-M. Tarascon, V. Viallet: Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application, Solid State Ion. 221, 1–5 (2012)CrossRefGoogle Scholar
  99. 50.99
    M.H. Braga, J.A. Ferreira, V. Stockhausen, J.E. Oliveira, A. El-Azab: Novel Li3ClO based glasses with superionic properties for lithium batteries, J. Mater. Chem. A 2, 5470–5480 (2014)CrossRefGoogle Scholar
  100. 50.100
    M.H. Braga, A.J. Murchison, J.A. Ferreira, P. Singh, J.B. Goodenough: Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells, Energy Environ. Sci. 9, 948–954 (2016)CrossRefGoogle Scholar
  101. 50.101
    J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck: Electrical properties of amorphous lithium electrolyte thin films, Solid State Ion. 53–56, 647 (1992)CrossRefGoogle Scholar
  102. 50.102
    X. Yu, J.B. Bates, G.E. Jellison, F.X. Hart: A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride, J. Electrochem. Soc. 144(2), 524 (1997)CrossRefGoogle Scholar
  103. 50.103
    L.M. Goncalves, J.F. Ribeiro, M.F. Silva, M.M. Silva, J.H. Correia: Integrated solid-state film lithium battery, Procedia Eng. 5, 778–781 (2010)CrossRefGoogle Scholar
  104. 50.104
    H.K. Song, K.T. Lee, M.G. Kim, L.F. Nazar, J. Cho: Recent progress in nanostructured cathode materials for lithium secondary batteries, Adv. Funct. Mater. 20, 3818–3834 (2010)CrossRefGoogle Scholar
  105. 50.105
    V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, K.B. Carretero-Gonzalez, J. Rojo: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci. 5, 5884–5901 (2012)CrossRefGoogle Scholar
  106. 50.106
    B.L. Ellis, L.F. Nazar: Sodium and sodium-ion energy storage batteries, Curr. Opin. Solid State Mater. Sci. 16, 168–177 (2012)CrossRefGoogle Scholar
  107. 50.107
    N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba: Research development on sodium-ion batteries, Chem. Rev. 114, 11636–11682 (2014)CrossRefGoogle Scholar
  108. 50.108
    D. Kundu, E. Talaie, V. Duffort, L.F. Nazar: The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem. Int. Ed. 54, 3431–3448 (2015)CrossRefGoogle Scholar
  109. 50.109
    A. Manthiram, X. Yu: Ambient temperature sodium-sulfur batteries, Small 11, 2108–2114 (2015)CrossRefGoogle Scholar
  110. 50.110
    J.T. Kummer: \(\upbeta\)-Alumina electrolytes, Prog. Solid State Chem. 7, 141–175 (1972)CrossRefGoogle Scholar
  111. 50.111
    A. Hooper: A study of the electrical properties of single-crystal and polycrystalline \(\upbeta\)-alumina using complex plane analysis, J. Phys. D 10, 1487 (1977)CrossRefGoogle Scholar
  112. 50.112
    U. Von Alpen, M.F. Bell, H.H. Höfer: Compositional dependence of the electrochemical and structural parameters in the nasicon system (Na1+xSixZr2P3-xO12), Solid State Ion. 3/4, 215–218 (1981)CrossRefGoogle Scholar
  113. 50.113
    J.B. Goodenough, H.Y.P. Hong, J.A. Kafalas: Fast Na+-ion transport in skeleton structures, Mater. Res. Bull. 11, 203–220 (1976)CrossRefGoogle Scholar
  114. 50.114
    A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago: Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries, Nat. Commun. 3(856), 1–5 (2012)Google Scholar
  115. 50.115
    W. Yao, K. Berg, S. Martin: Structure and properties of glasses in the MI + M2S + (0.1Ga2S3 + 0.9GeS2), M = Li, Na, K and Cs, system, J. Non-Cryst. Solids 354(18), 2045 (2008)CrossRefGoogle Scholar
  116. 50.116
    H. Che, S. Chen, Y. Xie, H. Wang, K. Amine, X.-Z. Liao, Z.-F. Ma: Electrolyte design strategies and research progress for room-temperature sodium-ion batteries, Energy Environ. Sci. 10, 1075–1101 (2017)CrossRefGoogle Scholar
  117. 50.117
    J.-J. Kim, K. Yoon, I. Park, K. Kang: Progress in the development of sodium-ion solid electrolytes, Small Methods 1(10), 1700219 (2017)CrossRefGoogle Scholar
  118. 50.118
    S.S. Berbano, I. Seo, C.M. Bischoff, K.E. Schuller, S.W. Martin: Formation and structure of Na2S + P2S5 amorphous materials prepared by melt-quenching and mechanical milling, J. Non-Cryst. Solids 358, 93–98 (2012)CrossRefGoogle Scholar
  119. 50.119
    M. Jansen, U. Henseler: Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate, J. Solid State Chem. 99(1), 110 (1992)CrossRefGoogle Scholar
  120. 50.120
    K. Noi, A. Hayashi, M. Tatsumisago: Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling, J. Power Sources 269, 260–265 (2014)CrossRefGoogle Scholar
  121. 50.121
    A. Hayashi, K. Noi, N. Tanibata, M. Nagao, M. Tatsumisago: High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4, J. Power Sources 258, 420–423 (2014)CrossRefGoogle Scholar
  122. 50.122
    S. Yubuchi, A. Hayashi, M. Tatsumisago: Sodium-ion conducting Na3PS4 electrolyte synthesized via a liquid-phase process using N-methylformamide, Chem. Lett. 44(7), 884–886 (2015)CrossRefGoogle Scholar
  123. 50.123
    N. Tanibata, K. Noi, A. Hayashi, M. Tatsumisago: Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes, RSC Advances 4, 17120–17123 (2014)CrossRefGoogle Scholar
  124. 50.124
    L. Zhang, K. Yang, J. Mi, L. Lu, L. Zhao, L. Wang, Y. Li, H. Zeng: Na3PSe4: A novel chalcogenide solid electrolyte with high ionic conductivity, Adv. Energy Mater. 5, 1501294 (2015)CrossRefGoogle Scholar
  125. 50.125
    Y. Hibi, N. Tanibata, A. Hayashi, M. Tatsumisago: Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique, Solid State Ion. 270, 6–9 (2015)CrossRefGoogle Scholar
  126. 50.126
    Y. Onodera, H. Nakashima, K. Mori, T. Otomo, T. Fukunaga: Structure and conductivity of Na-P-S superionic conducting glasses studied by Neutron and x-ray diffraction, JPS Cinf. Proc. 8, 031031 (2015)Google Scholar
  127. 50.127
    S.-L. Shang, Z. Yu, Y. Wang, D. Wang, Z.-K. Liu: Origin of outstanding phase and moisture stability in a Na3P1-xAsxS4 superionic conductor, Appl. Mater. Interfaces 9, 16261–16269 (2017)CrossRefGoogle Scholar
  128. 50.128
    Z. Yu, S.-L. Shang, J.-H. Seo, D. Wang, X. Luo, Q. Huang, S. Chen, J. Lu, X. Li, Z.-K. Liu, D. Wang: Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries, Adv. Mater. 29, 1605561 (2017)CrossRefGoogle Scholar
  129. 50.129
    H. Wang, Y. Chen, Z.D. Hood, G. Sahu, A.S. Pandian, J.K. Keum, K. An, C. Liang: An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure, Angew. Chem. Int. Ed. 55, 8551–8555 (2016)CrossRefGoogle Scholar
  130. 50.130
    A. Banerjee, K.H. Park, J.W. Heo, Y.J. Nam, C.K. Moon, S.M. Oh, S.T. Hong, Y.S. Jung: Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries, Angew. Chem. 128, 9786 (2016)CrossRefGoogle Scholar
  131. 50.131
    S.-H. Bo, Y. Wang, J.C. Kim, W.D. Richards, G. Ceder: Computational and experimental investigations of Na-ion conduction in cubic Na3PSe4, Chem. Mater. 28, 252–258 (2016)CrossRefGoogle Scholar
  132. 50.132
    Y. Wang, W.D. Richards, S.-H. Bo, L.J. Miara, G. Ceder: Computational prediction and evaluation of solid-state sodium superionic conductors Na7P3X11 (X=O, S, Se), Chem. Mater. 29, 7475–7482 (2017)CrossRefGoogle Scholar
  133. 50.133
    W.D. Richards, T. Tsujimura, L.J. Miara, Y. Wang, J.C. Kim, S.P. Ong, I. Uechi, N. Suzuki, G. Ceder: Design and synthesis of the superionic conductor Na10SnP2S12, Nat. Commun. 7, 11009 (2016)CrossRefGoogle Scholar
  134. 50.134
    C. Li, S. Jiang, J. Lv, T. Zheng: Ionic conductivities of Na–Ge–P glass ceramics as solid electrolyte, J. Alloys Compd. 633, 246–249 (2015)CrossRefGoogle Scholar
  135. 50.135
    T. Honma, M. Okamoto, T. Togashi, N. Ito, K. Shinozaki, T. Komatsu: Electrical conductivity of Na2O–Nb2O5–P2O5 glass and fabrication of glass–ceramic composites with NASICON type Na3Zr2Si2PO12, Solid State Ion. 269, 19–23 (2015)CrossRefGoogle Scholar
  136. 50.136
    Y. Ni, R. Zheng, X. Tan, W. Yue, P. Lv, J. Yang, D. Song, K. Yu, W. Wei: A fluorophosphate glass–ceramic electrolyte with superior ionic conductivity and stability for Na-ion batteries, J. Mater. Chem. A 3, 17558–17562 (2015)CrossRefGoogle Scholar
  137. 50.137
    M.H. Braga, J.A. Ferreira, A.J. Murchison, J.B. Goodenough: Electric dipoles and ionic conductivity in a Na+ glass electrolyte, J. Electrochem. Soc. 164(2), A207–A213 (2017)CrossRefGoogle Scholar
  138. 50.138
    M.H. Braga, J.A. Ferreira, A.J. Murchison: An electrochemical solid carbon-sulfur Na-ion based device and uses thereof, Patent WO2016157083A1 (2016)Google Scholar
  139. 50.139
    M. Venkateswarlu, N. Satyanarayana: AC conductivity studies of silver based fast ion conducting glassy materials for solid state batteries, Mater. Sci. Eng. B 54, 189–195 (1998)CrossRefGoogle Scholar
  140. 50.140
    S.S. Das, B.P. Baranwal, C.P. Gupta, P. Singh: Characteristics of solid-state batteries with zinc/cadmium halide-doped silver phosphate glasses as electrolytes, J. Power Sources 114, 346–351 (2003)CrossRefGoogle Scholar
  141. 50.141
    R.C. Agrawal, M.L. Verma, R.K. Gupta: Electrical and electrochemical properties of a new silver tungstate glass system: X[0.75AgI: 0.25AgCl]: (1-x)[Ag2O: WO3, Solid State Ion. 171(3/4), 199–205 (2004)CrossRefGoogle Scholar
  142. 50.142
    E. Lefterova, S. Bliznakov, P. Angelov, S. Vassilev, Y. Dimitriev: New silver fast ion-conducting glassy materials in the AgI-Ag2So4TeO2 system for solid state batteries, Bulg. chem. Commun. 38(3), 197–201 (2006)Google Scholar
  143. 50.143
    S. Bhattacharya, A. Ghosh: Relaxation of silver ions in superionic borate glasses, Chem. Phys. Lett. 424, 295 (2006)CrossRefGoogle Scholar
  144. 50.144
    S.S. Das, P.K. Srivastava, N.B. Singh: Fast ion conducting phosphate glasses and glass ceramic composites: Promising materials for solid state batteries, J. Non-Cryst. Solids 358, 2841–2846 (2012)CrossRefGoogle Scholar
  145. 50.145
    S.A. Suthanthiraraj, R. Sarumathi: A new silver ion conducting SbI3–Ag4P2O7 nanocomposite solid electrolyte, Appl. Nanosci. 3, 501–508 (2013)CrossRefGoogle Scholar
  146. 50.146
    G. Delaizir, N. Manafi, G. Jouan, P. Rozier, M. Dolle: All-solid-state silver batteries assembled by spark plasma sintering, Solid State Ion. 207, 57–63 (2012)CrossRefGoogle Scholar
  147. 50.147
    T. Takahashi, S. Ikeda, O. Yamamoto: Solid-state ionics: A new high ionic conductivity solid electrolyte Ag6I4WO4 and use of this compound in a solid-electrolyte cell, J. Electrochem. Soc. 120, 647–651 (1973)CrossRefGoogle Scholar
  148. 50.148
    E.M. Masoud, M. Khairy, M.A. Mousa: Electrical properties of fast ion conducting silver based borate glasses: Application in solid battery, J. Alloys Compd. 569, 150–155 (2013)CrossRefGoogle Scholar
  149. 50.149
    X. Ji, L.F. Nazar: Advances in Li–S batteries, J. Mater. Chem. 20, 9821–9826 (2010)CrossRefGoogle Scholar
  150. 50.150
    D. Marmorstein, T.H. Yu, K.A. Striebel, F.R. McLarnon, J. Hou, E.J. Cairns: Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes, J. Power Sources 89, 219–226 (2000)CrossRefGoogle Scholar
  151. 50.151
    M. Ribes, B. Carette, M. Maurin: Verres conducteurs ioniques du système Li2S-GeS2-LiI. Leur utilisation dans des générateurs “tout solide” à anode de lithium, J. Phys. Colloq. C 9(43), 403–406 (1982)Google Scholar
  152. 50.152
    B. Carette, M. Maurin, M. Ribes, M. Duclot: Ionic conductive sulfide-based M2S-GeS2-MI (M = Li, Ag) glass systems. Their use in solid state batteries, Solid State Ion. 9/10, 655 (1983)CrossRefGoogle Scholar
  153. 50.153
    B. Knutz, S. Skaarup: Cycling of Li/Li3N/TiS2 solid state cells, Solid State Ion. 9/10, 371 (1983)CrossRefGoogle Scholar
  154. 50.154
    T. Minami, A. Hayashi, M. Tatsumisago: Preparation and characterization of lithium ion-conducting oxysulfide glasses, Solid State Ion. 136/137, 1015 (2000)CrossRefGoogle Scholar
  155. 50.155
    R. Komiya, A. Hayashi, H. Morimoto, M. Tatsumisago, T. Minami: Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100-x)(0.6Li2S\(\cdot{}\)0.4SiS2)\(\cdot{}\)xLi4SiO4 obtained by mechanochemical synthesis, Solid State Ion. 140(1/2), 83–87 (2001)CrossRefGoogle Scholar
  156. 50.156
    F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: Effects of conductive additives in composite positive electrodes on charge–discharge behaviors of all-solid-state lithium secondary batteries, J. Electrochem. Soc. 152(8), A1499 (2005)CrossRefGoogle Scholar
  157. 50.157
    F. Mizuno, S. Hama, A. Hayashi, K. Tadanaga, T. Minami, M. Tatsumisago: All solid-state lithium secondary batteries using high lithium ion conducting Li2S–P2S5 glass-ceramics, Chem. Lett. 31(12), 1244 (2002)CrossRefGoogle Scholar
  158. 50.158
    H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: All-solid-state lithium secondary batteries using LiMn2O4 electrode and Li2S–P2S5 solid electrolyte, J. Electrochem. Soc. 157(4), A407 (2010)CrossRefGoogle Scholar
  159. 50.159
    F. Mizuno, A. Hayashi, K. Tadanaga, T. Minami, M. Tatsumisago: All-solid-state lithium secondary batteries using a layer-structured LiNi0.5Mn0.5O2 cathode material, J. Power Sources 124(1), 170 (2003)CrossRefGoogle Scholar
  160. 50.160
    H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Electrochemical performance of all-solid-state lithium secondary batteries with Li–Ni–Co–Mn oxide positive electrodes, Electrochim. Acta 55(28), 8821 (2010)CrossRefGoogle Scholar
  161. 50.161
    A. Hayashi, T. Konishi, K. Tadanaga, T. Minami, M. Tatsumisago: All-solid-state lithium secondary batteries with SnS–P2S5 negative electrodes and Li2S–P2S5 solid electrolytes, J. Power Sources 146(1/2), 496 (2005)CrossRefGoogle Scholar
  162. 50.162
    H. Kitaura, K. Takahashi, F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: Preparation of \(\upalpha\)-Fe2O3 electrode materials via solution process and their electrochemical properties in all-solid-state lithium batteries, J. Electrochem. Soc. 154(7), A725 (2007)CrossRefGoogle Scholar
  163. 50.163
    Y. Nishio, H. Kitaura, A. Hayashi, M. Tatsumisago: All-solid-state lithium secondary batteries using nanocomposites of NiS electrode/Li2S–P2S5 electrolyte prepared via mechanochemical reaction, J. Power Sources 189(1), 629 (2009)CrossRefGoogle Scholar
  164. 50.164
    M. Nagao, H. Kitaura, A. Hayashi, M. Tatsumisago: Characterization of all-solid-state lithium secondary batteries using CuxMo6S8-y electrode and Li2S–P2S5 solid electrolyte, J. Power Sources 189(1), 672 (2009)CrossRefGoogle Scholar
  165. 50.165
    A. Hayashi, A. Inoue, M. Tatsumisago: Electrochemical performance of NiP2 negative electrodes in all-solid-state lithium secondary batteries, J. Power Sources 189(1), 669 (2009)CrossRefGoogle Scholar
  166. 50.166
    M. Nagao, A. Hayashi, M. Tatsumisago: All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode, J. Power Sources 196(16), 6902 (2011)CrossRefGoogle Scholar
  167. 50.167
    K. Aso, H. Kitaura, A. Hayashi, M. Tatsumisago: SnP0.94 active material synthesized in high-boiling solvents for all-solid-state lithium batteries, J. Ceram. Soc. Jpn 118(1379), 620 (2010)CrossRefGoogle Scholar
  168. 50.168
    T. Ohzuku, A. Ueda, N. Yamamoto: Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells, J. Electrochem. Soc. 142(5), 1431 (1995)CrossRefGoogle Scholar
  169. 50.169
    K. Minami, A. Hayashi, S. Ujiie, M. Tatsumisago: Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5, Solid State Ion. 192, 122–125 (2011)CrossRefGoogle Scholar
  170. 50.170
    M. Nagao, A. Hayashi, M. Tatsumisago: Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery, Electrochem. Commun. 22, 177–180 (2012)CrossRefGoogle Scholar
  171. 50.171
    M. Nagao, A. Hayashi, M. Tatsumisago: Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S-P2S5 solid electrolyte, Electrochemistry 80, 734–736 (2012)CrossRefGoogle Scholar
  172. 50.172
    N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T. Sasaki: Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification, Adv. Mater. 18(17), 2226 (2006)CrossRefGoogle Scholar
  173. 50.173
    N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada, T. Sasaki: LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Commun. 9(7), 1486 (2007)CrossRefGoogle Scholar
  174. 50.174
    H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode, Solid State Ion. 192(1), 304 (2011)CrossRefGoogle Scholar
  175. 50.175
    A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O–SiO2 glasses, Electrochem. Solid State Lett. 11(1), A1 (2008)CrossRefGoogle Scholar
  176. 50.176
    A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Modification of interface between LiCoO2 electrode and Li2S–P2S5 solid electrolyte using Li2O–SiO2 glassy layers, J. Electrochem. Soc. 156(1), A27 (2009)CrossRefGoogle Scholar
  177. 50.177
    A. Sakuda, A. Hayashi, M. Tatsumisago: Interfacial Observation between LiCoO2 Electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy, Chem. Mater. 22(3), 949 (2010)CrossRefGoogle Scholar
  178. 50.178
    A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S–P2S5 electrolyte, J. Power Sources 189(1), 527 (2009)CrossRefGoogle Scholar
  179. 50.179
    A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: LiCoO2 electrode particles coated with Li2S–P2S5 solid electrolyte for all-solid-state batteries, Electrochem. Solid State Lett. 13(6), A73 (2010)CrossRefGoogle Scholar
  180. 50.180
    A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes, J. Power Sources 196, 6735–6741 (2011)CrossRefGoogle Scholar
  181. 50.181
    H. Kitaura, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes, J. Mater. Chem. 21(1), 118 (2011)CrossRefGoogle Scholar
  182. 50.182
    F. Stadler, C. Fietzek: Crystalline halide substituted Li-argyrodites as solid electrolytes for lithium secondary batteries, ECS Transactions 25, 177 (2010)CrossRefGoogle Scholar
  183. 50.183
    S. Boulineau: Synthèses et caractérisations de matériaux céramiques, vitreux et vitrocéramiques à base de soufre, utilisables comme électrolytes dans les batteries tout-solide, Ph.D. Thesis (University Picardie Jules Verne, Amiens France 2013), https://tel.archives-ouvertes.fr/tel-01356443Google Scholar
  184. 50.184
    S. Boulineau, J.-M. Tarascon, J.-B. Leriche, V. Viallet: Electrochemical properties of all-solid-state lithium secondary batteries using Li-argyrodite Li6PS5Cl as solid electrolyte, Solid State Ion. 242, 45–48 (2013)CrossRefGoogle Scholar
  185. 50.185
    N.J. Dudney: Solid-state thin-film rechargeable batteries, Mater. Sci. Eng. B 116, 245–249 (2005)CrossRefGoogle Scholar
  186. 50.186
    K. Kanehori, K. Matsumoto, K. Miyauchi, T. Kudo: Thin film solid electrolyte and its application to secondary lithium cell, Solid State Ion. 9, 1445–1448 (1983)CrossRefGoogle Scholar
  187. 50.187
    R. Creus, J. Sarradin, R. Astier, A. Pradel, A.M. Ribes: The use of ionic and mixed conductive glasses in microbatteries, Mater. Sci. Eng. B 3(1/2), 109–112 (1989)CrossRefGoogle Scholar
  188. 50.188
    G. Meunier, R. Dormoy, A. Levasseur: New positive-electrode materials for lithium thin film secondary batteries, Mater. Sci. Eng. B 3(1/2), 19–23 (1989)CrossRefGoogle Scholar
  189. 50.189
    J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, J.D. Robertson: Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources 43/44, 103–110 (1993)CrossRefGoogle Scholar
  190. 50.190
    S.-J. Lee, H.-K. Baik, S.-M. Lee: An all-solid-state thin film battery using LISIPON electrolyte and Si–V negative electrode films, Electrochem. Commun. 5, 32–35 (2003)CrossRefGoogle Scholar
  191. 50.191
    V.P. Phan, B. Pecquenard, F.L. Cras: High-performance all-solid-state cells fabricated with silicon electrodes, Adv. Funct. Mater. 22(12), 2580–2584 (2012)CrossRefGoogle Scholar
  192. 50.192
    B. Fleutot, B. Pecquenard, F.L. Cras, B. Delis, H. Martinez, L. Dupont, A. Levasseur: Characterization of all-solid-state Li/LiPONB/TiOS microbatteries produced at the pilot scale, J. Power Sources 196, 10289–10296 (2011)CrossRefGoogle Scholar
  193. 50.193
    B.J. Neudecker, R.A. Zuhr, J.B. Bates: Lithium silicon tin oxynitride (LiySiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics, J. Power Sources 81, 27–32 (1999)CrossRefGoogle Scholar
  194. 50.194
    B. Wang, J.B. Bates, F.X. Hart, B.C. Sales, R.A. Zuhr, J.D. Robertson: Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes, J. Electrochem. Soc. 143(10), 3203–3213 (1996)CrossRefGoogle Scholar
  195. 50.195
    J.B. Bates, D. Lubben, N.J. Dudney: Thin-film Li-LiMn2O4 batteries, IEEE Aerosp. Electron. Syst. Mag. 10(4), 30–32 (1995)CrossRefGoogle Scholar
  196. 50.196
    B. Fleutot, B. Pecquenard, H. Martinez, M. Letellier, A. Levasseur: Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance, Solid State Ion. 186, 29–36 (2011)CrossRefGoogle Scholar
  197. 50.197
    B. Fleutot, B. Pecquenard, H. Martinez, A. Levasseur: Thorough study of the local structure of LiPON thin films to better understand the influence of a solder-reflow type thermal treatment on their performances, Solid State Ion. 206, 72–77 (2012)CrossRefGoogle Scholar
  198. 50.198
    B. Fleutot, B. Pecquenard, H. Martinez, A. Levasseur: Lithium borophosphate thin film electrolyte as an alternative to LiPON for solder-reflow processed lithium-ion microbatteries, Solid State Ion. 249/250, 49–55 (2013)CrossRefGoogle Scholar
  199. 50.199
    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon: Li-O2 and Li-S batteries with high energy storage, Nat. Mater. 11(1), 19 (2012)CrossRefGoogle Scholar
  200. 50.200
    N. Machida, T. Shigematsu: An all-solid-state lithium battery with sulfur as positive electrode materials, Chem. Lett. 33(4), 376 (2004)CrossRefGoogle Scholar
  201. 50.201
    A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, M. Tatsumisago: All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes, Electrochem. Commun. 5(8), 701 (2003)CrossRefGoogle Scholar
  202. 50.202
    A. Hayashi, R. Ohtsubo, T. Ohtomo, F. Mizuno, M. Tatsumisago: All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material, J. Power Sources 183(1), 422 (2008)CrossRefGoogle Scholar
  203. 50.203
    M. Nagao, A. Hayashi, M. Tatsumisago: Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte, Electrochim. Acta 56(17), 6055 (2011)CrossRefGoogle Scholar
  204. 50.204
    M. Nagao, Y. Imade, H. Narisawa, T. Kobayashi, R. Watanabe, T. Yokoi, T. Tatsumi, R. Kanno: All-solid-state lithium–sulfur batteries with three-dimensional mesoporous electrode structures, J. Power Sources 222, 237 (2013)CrossRefGoogle Scholar
  205. 50.205
    T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, M. Nagao, R. Watanabe, T. Yokoi, A. Yamada, R. Kanno, T. Tatsumi: All solid-state battery with sulfur electrode and thio-LISICON electrolyte, J. Power Sources 182(2), 621 (2008)CrossRefGoogle Scholar
  206. 50.206
    F. Lufrano, P. Staiti: Influence of the surface—chemistry of modified mesoporous carbon on the electrochemical behavior of solid-state supercapacitors, Energy Fuels 24, 3313–3320 (2010)CrossRefGoogle Scholar
  207. 50.207
    H.B. Lin, W.Z. Huang, H.B. Rong, J.N. Hu, S.W. Mai, L.D. Xing, M.Q. Xu, X.P. Li, W.S. Li: Surface natures of conductive carbon materials and their contributions to charge/discharge performance of cathodes for lithium ion batteries, J. Power Sources 287, 276–282 (2015)CrossRefGoogle Scholar
  208. 50.208
    M. Chen, S. Adams: High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte, J. Solid State Electrochem. 19, 697–702 (2015)CrossRefGoogle Scholar
  209. 50.209
    N. Tanibata, T. Matsuyama, A. Hayashi, M. Tatsumisago: All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity, J. Power Sources 275, 284–287 (2015)CrossRefGoogle Scholar
  210. 50.210
    K. Takada, T. Kanbara, Y. Yamamura, S. Kondo: Rechargeable solid-state batteries with silver ion conductors, Solid State Ion. 40/41, 988–992 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Virginie Viallet
    • 1
    Email author
  • Vincent Seznec
    • 1
  • Akitoshi Hayashi
    • 2
  • Masahiro Tatsumisago
    • 2
  • Annie Pradel
    • 3
  1. 1.Laboratoire de Réactivité et Chimie des Solides (LRCS)Université de Picardie Jules VerneAmiensFrance
  2. 2.Dept. of Applied ChemistryOsaka Prefecture UniversityOsakaJapan
  3. 3.Institut Charles Gerhardt MontpellierUniversity of MontpellierMontpellierFrance

Personalised recommendations