Glass for Thermoelectric Applications

  • António Pereira GonçalvesEmail author
  • Elsa Branco Lopes
  • Gaëlle Delaizir
Part of the Springer Handbooks book series (SHB)


Thermoelectric materials, which are characterized by their figure of merit \(zT\), are able to convert heat into electricity and inversely, they can produce a heat gradient from a potential gradient. In this chapter, chalcogenide glasses that exhibit low glass transition temperature (\(T_{\mathrm{g}}\)) as well as very low thermal conductivity are envisaged as potential thermoelectric materials for room temperature applications up to \({\mathrm{100}}\,{\mathrm{{}^{\circ}\mathrm{C}}}\). Even if they do not compete with their crystalline counterparts, such as \(\mathrm{Bi_{2}Te_{3}}\), in this range of temperature (mainly because of their high resistivity) some strategies are proved to be efficient to increase the \(zT\) value of these materials. For example, adding a metallic element (Cu), partially crystallizing the glassy matrix or considering composite materials are ways to reach this goal.


  1. J. Thomas: Drive cycle powertrain efficiencies and trends derived from EPA vehicle dynamometer results, SAE Int. J. Passeng. Cars—Mech. Syst. 7, 1374–1384 (2014)CrossRefGoogle Scholar
  2. A.F. Ioffe: Energetic Basis of Thermoelectrical Cells from Semiconductors (Academy of Sciences of the USSR, Moscow 1950), in RussianGoogle Scholar
  3. C. Wood: Materials for thermoelectric energy conversion, Rep. Prog. Phys. 51, 459–539 (1988)CrossRefGoogle Scholar
  4. D.T. Morelli, G.A. Slack: High lattice thermal conductivity solids. In: High Thermal Conductivity Materials, ed. by S.L. Shindé, J.S. Goela (Springer, New York 2006)Google Scholar
  5. H.J. Goldsmid, R.W. Douglas: The use of semiconductors in thermoelectric refrigeration, Br. J. Appl. Phys. 5, 386–390 (1954)CrossRefGoogle Scholar
  6. M.V. Vedernikov, E.K. Iordanishvili: A.F. Loffe and origin of modern semiconductor thermoelectric enery conversion. In: Proc. 17th Int. Conf. Thermoelectr., Nagoya (1998) pp. 37–42Google Scholar
  7. G.A. Slack: New materials and performance limits for thermoelectric cooling. In: CRC Handbook of Thermoelectrics, ed. by D.M. Rowe (CRC, Boca Raton 1995)Google Scholar
  8. L.D. Hicks, M.S. Dresselhaus: Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B. 47, 12727–12731 (1993)CrossRefGoogle Scholar
  9. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen: Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports, J. Am. Chem. Soc. 133, 7837–7846 (2011)CrossRefGoogle Scholar
  10. Y. Mudryk, P. Rogl, C. Paul, S. Berger, E. Bauer, G. Hilscher, C. Godart, H. Noël, A. Saccone, R. Ferro: Crystal chemistry and thermoelectric properties of clathrates with rare-earth substitution, Physica B 328, 44–48 (2003)CrossRefGoogle Scholar
  11. H. Kleinke: New bulk materials for thermoelectric power generation: Clathrates and complex antimonides, Chem. Mater. 22, 604–611 (2010)CrossRefGoogle Scholar
  12. T. Takabatake, K. Suekuni, T. Nakayama, E. Kaneshita: Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory, Rev. Mod. Phys. 86, 841 (2014)CrossRefGoogle Scholar
  13. G.S. Nolas, J.L. Cohn, G.A. Slack, S.B. Schujman: Semiconducting Ge clathrates: Promising candidates for thermoelectric applications, Appl. Phys. Lett. 73, 178–180 (1998)CrossRefGoogle Scholar
  14. P. Norouzzadeh, C.W. Myles, D. Vashaee: Prediction of giant thermoelectric power factor in type-VIII clathrate Si46, Sci. Rep. 4, 7028 (2014)CrossRefGoogle Scholar
  15. N. Shutoh, S. Sakurada: Thermoelectric properties of Tix(Zr,Hf)1-xNiSn half Heusler compounds, J. Alloys Comp. 389, 204–208 (2005)CrossRefGoogle Scholar
  16. G. Joshi, R. He, M. Engber, G. Samsonidze, T. Pantha, E. Dahal, K. Dahal, J. Yang, Y. Lan, B. Kozinskyc, Z. Ren: NbFeSb-based p-type half-heuslers for power generation applications, Energy Environ. Sci. 7, 4070–4076 (2014)CrossRefGoogle Scholar
  17. A.U. Khan, N. Vlachos, T. Kyratsi: High thermoelectric figure of merit of Mg2Si0.55Sn0.4Ge0.05 materials doped with Bi and Sb, Scr. Mater. 69, 606–609 (2013)CrossRefGoogle Scholar
  18. N.L. Okamoto, T. Koyama, K. Kishida, K. Tanaka, H. Inui: Crystal structure and thermoelectric properties of chimney-ladder compounds in the Ru2Si3-Mn4Si7 pseudobinary system, Acta Mater. 57, 5036–5045 (2009)CrossRefGoogle Scholar
  19. N.L. Okamoto, T. Koyama, K. Kishida, K. Tanaka, H. Inui: Structural and thermoelectric properties of chimney-ladder compounds in the Ru–Mn–Si system, J. Electron. Mater. 39, 1640–1644 (2010)CrossRefGoogle Scholar
  20. K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, C. Wan: Thermoelectric ceramics for energy harvesting, J. Am. Ceram. Soc. 96, 1–23 (2013)CrossRefGoogle Scholar
  21. E. Guilmeau, Y. Bréard, A. Maignan: Transport and thermoelectric properties in copper intercalated TiS2 chalcogenide, Appl. Phys. Lett. 99, 052107 (2011)CrossRefGoogle Scholar
  22. J. Heo, G. Laurita, S. Muir, M.A. Subramanian, D.A. Keszler: Enhanced thermoelectric performance of synthetic tetrahedrites, Chem. Mater. 26, 2047–2051 (2014)CrossRefGoogle Scholar
  23. A.P. Gonçalves, C. Godart: New promising bulk thermoelectrics: Intermetallics, pnictides and chalcogenides, Eur. Phys. J. B 87, 42 (2014)CrossRefGoogle Scholar
  24. T.C. Harman, M.P. Walsh, B.E. Laforge, G.W. Turner: Nanostructured thermoelectric materials, J. Electron. Mater. 34, L19–L22 (2005)CrossRefGoogle Scholar
  25. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis: High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature 489, 414–418 (2012)CrossRefGoogle Scholar
  26. K.E. Petersen, U. Birkholz, D. Adler: Properties of crystalline and amorphous silicon telluride, Phys. Rev. B 8, 1453–1461 (1973)CrossRefGoogle Scholar
  27. A.S. Glebov: Semiconducting chalcogenide glass II—Properties of chalcogenide glasses: The nature of the current instability in chalcogenide vitreous semiconductors. In: Semiconductors and Semimetals, Vol. 79, ed. by R. Fairman, B. Ushkov (2004) pp. 57–114Google Scholar
  28. A.K. Singh, P. Kumar, K. Singh, N.S.W. Saxena: Thermal transport in Se81Te15Sb4 chalcogenide glass, Chalcog. Lett. 3, 139–144 (2006)Google Scholar
  29. J.B. Vaney, G. Delaizir, E. Alleno, O. Rouleau, A. Piarristeguy, J. Monnier, C. Godart, M. Ribes, R. Escalier, A. Pradel, A.P. Goncalves, E.B. Lopes, G.J. Cuello, P. Ziolkowski, E. Muller, C. Candolfi, A. Dauscher, B. Lenoir: A comprehensive study of the crystallization of Cu–As–Te glasses: Microstructure and thermoelectric properties, J. Mater. Chem. A 1, 8190–8200 (2013)CrossRefGoogle Scholar
  30. J.-B. Vaney, A. Piarristeguy, V. Ohorodniichuck, O. Ferry, A. Pradel, E. Alleno, J. Monnier, E.B. Lopes, A.P. Gonçalves, G. Delaizir, C. Candolfi, A. Dauscher, B. Lenoir: Effective medium theory based modeling of the thermoelectric properties of composites: Comparison between predictions and experiments in the glass–crystal composite system Si10As15Te75–Bi0.4Sb1.6Te3, J. Mater. Chem. C3, 11090–11098 (2015)Google Scholar
  31. A.P. Gonçalves, E.B. Lopes, J. Monnier, J. Bourgon, J.B. Vaney, A. Piarristeguy, A. Pradel, B. Lenoir, G. Delaizir, M.F.C. Pereira, E. Alleno, C. Godart: Fast and scalable preparation of tetrahedrite for thermoelectrics via glass crystallization, J. Alloy. Compdn. 664, 209–2017 (2016)CrossRefGoogle Scholar
  32. S. Cui, C. Boussard-Plédel, L. Calvez, F. Rojas, K. Chen, H. Ning, M.J. Reece, T. Guizouarn, B. Bureau: Comprehensive study of tellurium based glass ceramics for thermoelectric application, Adv. Appl. Ceram. 114, S42–S47 (2015)CrossRefGoogle Scholar
  33. R.A. Street, N.F. Mott: States in the gap in glassy semiconductors, Phys. Rev. Lett. 35, 1293–1296 (1975)CrossRefGoogle Scholar
  34. A. Moliton, B. Ratier: Propriétés électroniques et schémas de bandes dans les semiconducteurs amorphes. I. Concepts Fondamentaux in Annales de Physique (Les Editions de Physique, Les Ulis 1991)Google Scholar
  35. N.F. Mott, E.A. Davis: Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford 1982)Google Scholar
  36. D. Thouless: Relation between the Kubo–Greenwood formula and the Boltzmann equation for electrical conductivity, Philos. Mag. 32, 877–879 (1975)CrossRefGoogle Scholar
  37. M. Kastner, D. Adler, H. Fritzsche: Valence-alternation model for localized gap states in lone-pair semiconductors, Phys. Rev. Lett. 37, 1504 (1976)CrossRefGoogle Scholar
  38. N. Tohge, H. Matsuo, T. Minami: Electrical-properties of normal-type semiconductong chalcogenide glasses in the system Pb–Ge–Se, J. Non-Cryst. Solids 95, 809–816 (1987)CrossRefGoogle Scholar
  39. P. Nagels, L. Tichy, A. Triska, H. Ticha: Electrical-properties of glasses in the Ge–Bi–Sb–Se and Ge–Bi–S systems, J. Non-Cryst. Solids 59, 1015–1018 (1983)CrossRefGoogle Scholar
  40. I.P. Zvyagin: On the theory of hopping transport in disordered semiconductors, Phys. Status Solidi (b) 58, 443–449 (1973)CrossRefGoogle Scholar
  41. A. Moliton, B. Ratier: Propriétés électroniques et schémas de bandes dans les semiconducteurs amorphes. II. Etude des phénomènes de transport. In: Annales de Physique, ed. by EDP Sciences (Les Editions de Physique, Les Ulis 1991)Google Scholar
  42. A.P. Gonçalves, E.B. Lopes, O. Rouleau, C. Godart: Conducting glasses as new potential thermoelectric materials: The Cu–Ge–Te case, J. Mater. Chem. 20, 1516–1521 (2010)CrossRefGoogle Scholar
  43. A.P. Gonçalves, G. Delaizir, E.B. Lopes, L.M. Ferreira, O. Rouleau, C. Godart: Chalcogenide glasses as prospective thermoelectric materials, J. Electron. Mater. 40, 1015–1017 (2011)CrossRefGoogle Scholar
  44. A.P. Gonçalves, E.B. Lopes, G. Delaizir, J.B. Vaney, B. Lenoir, A. Piarristeguy, A. Pradel, J. Monnier, P. Ochin, C. Godart: Semiconducting glasses: A new class of thermoelectric materials?, J. Solid State Chem. 193, 26–30 (2012)CrossRefGoogle Scholar
  45. J.B. Vaney, A. Piarristeguy, A. Pradel, E. Alleno, B. Lenoir, C. Candolfi, A. Dauscher, A.P. Gonçalves, E.B. Lopes, G. Delaizir, J. Monnier, M. Ribes, C. Godart: Thermal stability and thermoelectric properties of CuxAs40-xTe60-ySey semiconducting glasses, J. Solid State Chem. 203, 212–217 (2013)CrossRefGoogle Scholar
  46. P. Lucas, C. Conseil, Z. Yang, Q. Hao, S. Cui, C. Boussard-Pledel, B. Bureau, F. Gascoin, C. Caillaud, O. Gulbiten, T. Guizouarn, P. Baruah, Q. Lic, J. Lucas: Thermoelectric bulk glasses based on the Cu–As–Te–Se system, J. Mater. Chem. A. 1, 8917–8925 (2013)CrossRefGoogle Scholar
  47. A. Dahshan, P. Sharma, K.A. Aly: Semiconducting quaternary chalcogenide glasses as new potential thermoelectric materials: An As–Ge–Se–Sb case, Dalton Trans. 44, 14799–14804 (2015)CrossRefGoogle Scholar
  48. V.S. Minaev: Glass-Forming Semiconductor Alloys (Metallurgy, Moscow 1991)Google Scholar
  49. P. Nagels: Electronic transport in amorphosis semiconductor. In: Amorphous Semiconductors, ed. by M.H. Brodsky (Springer, Berlin 1985) pp. 113–158Google Scholar
  50. G. Parthasarathy, A.K. Bandyopadhyay, S. Asokan, E.S.R. Gopal: Effect of pressure on the electrical-resistivity of bulk Ge20Te80 glass, Solid State Commun. 51, 195–197 (1984)CrossRefGoogle Scholar
  51. A.P. Gonçalves, E.B. Lopes, E. Alves, N.P. Barradas, N. Franco, O. Rouleau, C. Godart: New approaches to thermoelectric materials. In: Properties and Applications of Thermoelectric Materials, NATO ASI Series B—Physics and Biophysics, ed. by V. Zlatić, A. Hewson (Springer, Dordrecht 2009) pp. 51–67CrossRefGoogle Scholar
  52. G.A. Slack: Nonmetallic crystals with high thermal-conductivity, J. Phys. Chem. Solids 34, 321–335 (1973)CrossRefGoogle Scholar
  53. D.G. Cahill, J.R. Olson, H.E. Fischer, S.K. Watson, R.B. Stephens, R.H. Tait, T. Ashworth, R.O. Pohl: Thermal-conductivity and specific-heat of glass-ceramics, Phys. Rev. B 44, 12226–12232 (1991)CrossRefGoogle Scholar
  54. E. Alleno, D. Bérardan, C. Byl, C. Candolfi, R. Daou, R. Decourt, E. Guilmeau, S. Hébert, J. Hejtmanek, B. Lenoir, P. Masschelein, V. Ohorodnichuk, M. Pollet, S. Populoh, D. Ravot, O. Rouleau, M. Soulier: A round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co0.97Ni0.03Sb3, Rev. Sci. Instrum. (2015), Scholar
  55. H. Wang, W.D. Porter, H. Böttner, J. König, L. Chen, S. Bai, T.M. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J. Sharp, J. Lo, H. Kleinke, L. Kiss: Transport properties of bulk thermoelectrics: An international round-robin study, Part II: Thermal diffusivity, specific heat, and thermal conductivity, J. Electron. Mater. 42, 1073–1084 (2013)CrossRefGoogle Scholar
  56. S.-N. Zhang, J. He, T.-J. Zhu, X.-B. Zhao, T.M. Tritt: Thermal conductivity and specific heat of bulk amorphous chalcogenides Ge20Te80xxSex (x = 0, 1, 2, 8), J. Non-Cryst. Solids 355, 79–83 (2009)CrossRefGoogle Scholar
  57. C.B. Thomas, J.A. Savage: Thermal-conductivity and specific-heat of tellurium-based chalcogenide glasses, J. Non-Cryst. Solids 23, 139–143 (1977)CrossRefGoogle Scholar
  58. B. Poudel, Q. Hao: High thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science 320, 634 (2008)CrossRefGoogle Scholar
  59. A. Giridhar, S. Mahadevan: Silver as a dopant and as a constituent in As–Ag–Te glasses: Electrical conductivity, J. Non-Cryst. Solids 197, 228–234 (1996)CrossRefGoogle Scholar
  60. E. Marquez: Structural and electrical properties of the glassy semiconductor system Cu–As–Te, J. Mater. Sci. 23, 1399–1404 (1988)CrossRefGoogle Scholar
  61. L. Tichý, H. Tichá, P. Nagels: On the dc electrical conductivity in glassy Cu15As35Se50, Mater. Lett. 18, 73–77 (1993)CrossRefGoogle Scholar
  62. K. Shimakawa, S. Nitta, M. Mori: Influence of silver additive on electronic and ionic natures in amorphous As2Se3, Phys. Rev. B 18, 4348–4354 (1978)CrossRefGoogle Scholar
  63. L.D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou, K. Biswas, J.Q. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis: All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance, Energy Environ. Sci. 6, 3346–3355 (2013)CrossRefGoogle Scholar
  64. D.G. Zhao, M. Zuo, Z.Q. Wang, X.Y. Teng, H.R. Geng: Effects of WO3 micro/nano-inclusions on the thermoelectric properties of Co4Sb11.7Te0.3 Skutterudite, J. Nanosci. Nanotechnol. 15, 3076–3080 (2015)CrossRefGoogle Scholar
  65. J. Wang, X.X. Ye, X.B. Yaer, B.Y. Zhang, W. Ma, L. Miao: High thermoelectric performance of niobium-doped strontium titanate bulk material affected by all-scale grain boundary and inclusions, Scr. Mater. 99, 25–28 (2015)CrossRefGoogle Scholar
  66. J. Li, Q. Tan, J.-F. Li, D.W. Liu, F. Li, Z.-Y. Li, M. Zou, K. Wang: BiSbTe-based nanocomposites with high ZT: The effect of SiC nanodispersion on thermoelectric properties, Adv. Funct. Mater. 23, 4317–4323 (2013)CrossRefGoogle Scholar
  67. J. Lingner, M. Letz, G. Jakob: SrTiO3 glass–ceramics as oxide thermoelectrics, J. Mater. Sci. 48, 2812–2816 (2012)CrossRefGoogle Scholar
  68. L.H. Slack, T.J. Gray: Thermoelectric properties of composites formed by crystallizing As2SeTe2 glass, J. Am. Ceram. Soc. 54, 54–55 (1974)CrossRefGoogle Scholar
  69. J. Sonntag: Thermoelectric power in alloys with phase separation, J. Mater. Chem. C(4), 10973–10976 (2016)Google Scholar
  70. D.J. Bergman, L.G. Fel: Enhancement of thermoelectric power factor in composite thermoelectrics, J. Appl. Phys. 85, 8205–8216 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Nuclear Sciences and TechnologiesInstituto Superior Técnico, University of LisbonBobadelaPortugal
  2. 2.Institute of Research for Ceramics (IRCER)LimogesFrance

Personalised recommendations