Phase-Change Memory and Optical Data Storage

  • Xiang ShenEmail author
  • Yimin Chen
  • Guoxiang Wang
  • Yegang Lv
Part of the Springer Handbooks book series (SHB)


Phase-change memory is regarded as the most appealing of the nonvolatile memory technologies, with attractive properties including scalability, bit alterability, and fast write/erase and read performance. Over the past decade, the technology has experienced rapid growth. Well-known semiconductor manufacturers such as IBM, Infineon, Samsung, and Macronix have spared no effort in the push to commercialize this technology. At the same time, many novel phase-change materials have been developed, such as typical Ge-Sb-Te alloys, Zn-Sb-Te alloys, and ZnO-\(\mathrm{Sb_{2}Te_{3}}\) nanocomposite.

New techniques such as ultrafast calorimetry are continuously emerging to better understand the crystallization kinetics of supercooled liquids for phase-change materials. In addition, phase-change materials are ideal functional materials for use in integrated photonic memory, which provides a new paradigm in all-photonic memory.


  1. 44.1
    S.K. Lai: Brief history of ETOX NOR flash memory, J. Nanosci. Nanotechnol. 12(10), 7597–7603 (2012)CrossRefGoogle Scholar
  2. 44.2
    Y. Fujisaki: Overview of emerging semiconductor non-volatile memories, IEICE Electron. Express 9(10), 908–925 (2012)CrossRefGoogle Scholar
  3. 44.3
    H. Lan, H. Liu: UV-nanoimprint lithography: Structure, materials and fabrication of flexible molds, J. Nanosci. Nanotechnol. 13(5), 3145–3172 (2013)CrossRefGoogle Scholar
  4. 44.4
    H.J. Borg, R.V. Woudenberg: Trends in optical recording, J. Magn. Magn. Mater. 193(1–3), 519–525 (1999)CrossRefGoogle Scholar
  5. 44.5
    C.-Y. Lu: Future prospects of NAND flash memory technology-the evolution from floating gate to charge trapping to 3D stacking, J. Nanosc. Nanotechnol. 12(10), 7604–7618 (2012)CrossRefGoogle Scholar
  6. 44.6
    C. Miccoli, C.M. Compagnoni, L. Chiavarone, S. Beltrami, A.L. Lacaita, A.S. Spinelli, A. Visconti: Reliability characterization issues for nanoscale flash memories: A case study on 45-nm NOR devices, IEEE Trans. Dev. Mater. Reliab. 13(2), 362–369 (2013)CrossRefGoogle Scholar
  7. 44.7
    J.F. Scott: Ferroelectric Memories (Springer, Berlin, Heidelberg 2000)CrossRefGoogle Scholar
  8. 44.8
    S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O'Sullivan, S.L. Brown, J. Bucchigano, A. D. W., Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, W.J. Gallagher: Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory, J. Appl. Phys. 85, 5828 (1999)CrossRefGoogle Scholar
  9. 44.9
    S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.C. Chen, R.M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, C.H. Lam: Phase-change random access memory: A scalable technology, IBM J. Res. Dev. 52(4.5), 465–479 (2008)CrossRefGoogle Scholar
  10. 44.10
    H. Akinaga, H. Shima: Resistive random access memory (ReRAM) based on metal oxides, Proc. IEEE 98(12), 2237–2251 (2010)CrossRefGoogle Scholar
  11. 44.11
    G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jachson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, R.S. Shenoy: Phase change memory technology, J. Vac. Sci. Technol. B 28(2), 223–262 (2010)CrossRefGoogle Scholar
  12. 44.12
    S.R. Ovshinsky: Reversible electrical switching phenomena in disordered structures, Phys. Rev. Lett. 21, 1450–1453 (1968)CrossRefGoogle Scholar
  13. 44.13
    X.S. Miao, L.P. Shi, H.K. Lee, J.M. Li, R. Zhao, P.K. Tan, T.C. Chong: Temperature dependence of phase-change random access memory cell, Jpn. J. Appl. Phys. 45, 3955 (2006)CrossRefGoogle Scholar
  14. 44.14
    M. Wuttig, N. Yamada: Phase-change materials for rewriteable data storage, Nat. Mater. 6, 824–832 (2007)CrossRefGoogle Scholar
  15. 44.15
    W. Welnic, M. Wuttig: Reversible switching in phase-change materials, Mater. Today 11(6), 20–27 (2008)CrossRefGoogle Scholar
  16. 44.16
    M. Wuttig, D. Lusebrink, D. Wamangi, W. Welnic, M. Gilleßen, R. Dronskowski: The role of vacancies and local distortions in the design of phase-change mateirals, Nat. Mater. 6, 122–128 (2007)CrossRefGoogle Scholar
  17. 44.17
    A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga: Understanding the phase-change mechanism of rewritable optical media, Nat. Mater. 3(10), 703–708 (2004)CrossRefGoogle Scholar
  18. 44.18
    S. Kohara, K. Kato, S. Kimura, H. Tanaka, T. Usuki, K. Suzuya, Y. Tanaka: Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states, Appl. Phys. Lett. 89(20), 201910 (2006)CrossRefGoogle Scholar
  19. 44.19
    J. Akola, R.O. Jones: Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe, Phys. Rev. B 76(23), 235201 (2007)CrossRefGoogle Scholar
  20. 44.20
    B. Huang, J. Robertson: Bonding origin of optical contrast in phase-change memory materials, Phys. Rev. B 81(8), 081204 (2010)CrossRefGoogle Scholar
  21. 44.21
    R.O. Jones: Bonding in phase change materials: Concepts and misconceptions, J. Phys. Condens. Matter 30(15), 153001 (2018)CrossRefGoogle Scholar
  22. 44.22
    Y.K. Kim, K. Jeong, M.H. Cho, U. Hwang, H.S. Jeong, K. Kim: Changes in the electronic structures and optical band gap of Ge2Sb2Te5 and N-doped Ge2Sb2Te5 during phase transition, Appl. Phys. Lett. 90, 171920 (2007)CrossRefGoogle Scholar
  23. 44.23
    S. Privitera, E. Rimini, R. Zonca: Amorphous-to-crystal transition of nitrogen- and oxygen-doped Ge2Sb2Te5 films studied by in situ resistance measurements, Appl. Phys. Lett. 85, 3044 (2004)CrossRefGoogle Scholar
  24. 44.24
    B.W. Qiao, J. Feng, Y.F. Lai, Y. Ling, Y.Y. Lin, T. Tang, B.C. Ca, B. Chen: Effects of Si doping on the structural and electrical properties of Ge2Sb2Te5 films for phase change random access memory, Appl. Surf. Sci. 252(24), 8404–8409 (2006)CrossRefGoogle Scholar
  25. 44.25
    T.J. Park, S.Y. Choi, M.J. Kang: Phase transition characteristics of Bi/Sn doped Ge2Sb2Te5 thin film for PRAM application, Thin Solid Films 515(12), 5049–5053 (2007)CrossRefGoogle Scholar
  26. 44.26
    K.H. Song, S.W. Kim, J.H. Seo, H.Y. Lee: Influence of the additive Ag for crystallization of amorphous Ge-Sb-Te thin films, Thin Solid Films 517(14), 3958–3962 (2009)CrossRefGoogle Scholar
  27. 44.27
    N. Bai, F.R. Liu, X.X. Han, Z. Zhu, F. Liu, X. Lin, N.X. Sun: Effect of the Sn dopant on the crystallization of amorphous Ge2Sb2Te5 films induced by an excimer laser, Opt. Laser Technol. 74, 11–15 (2015)CrossRefGoogle Scholar
  28. 44.28
    M.H. Jang, S.J. Park, D.H. Lim, M.-H. Cho, K.H. Do, D.-H. Ko, H.C. Sohn: Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films, Appl. Phys. Lett. 95(1), 012102 (2009)CrossRefGoogle Scholar
  29. 44.29
    X. Zhou, L. Wu, Z. Song, F. Rao, M. Zhu, C. Peng, D. Yao, S. Song, B. Liu, S. Feng: Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application, Appl. Phys. Lett. 101(14), 202 (2012)CrossRefGoogle Scholar
  30. 44.30
    P. Němec, A. Moreac, V. Nazabal, M. Pavlišta, J. Přikryl, M. Frumar: Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study, J. Appl. Phys. 106, 103509 (2009)CrossRefGoogle Scholar
  31. 44.31
    F. Wei, L. Wang, T. Kong, L. Shi, R. Huang, J. Zhang, G. Cheng: Amorphous thermal stability of Al-doped Sb2Te3 films for phase-change memory application, Appl. Phys. Lett. 103(18), 181908 (2013)CrossRefGoogle Scholar
  32. 44.32
    C. Peng, L.C. Wu, Z.T. Song, F. Rao, M. Zhu, X.L. Li, B. Liu, L.M. Cheng, S.L. Feng, P.X. Yang, J.H. Chu: Performance improvement of Sb2Te3 phase change material by Al doping, Appl. Surf. Sci. 257(24), 10667–10670 (2011)CrossRefGoogle Scholar
  33. 44.33
    J. Xu, B. Liu, Z. Song, S. Feng, B. Chen: Crystallization and C-RAM application of Ag-doped Sb2Te3 material, Mater. Sci. Eng. B 127(2/3), 228–232 (2006)CrossRefGoogle Scholar
  34. 44.34
    Y.J. Chen, B. Zhang, Q.Q. Ding, Q.S. Deng, Y. Chen, Z.T. Song, J.X. Li, Z. Zhang, X.D. Han: Microstructure evolution and crystallography of the phase-change material TiSbTe films annealed in situ, J. Alloy. Compd. 678, 85–92 (2016)Google Scholar
  35. 44.35
    Y. Lu, S. Song, Z. Song, F. Rao, L. Wu, M. Zhu, B. Liu, D. Yao: Investigation of CuSb4Te2 alloy for high-speed phase change random access memory applications, Appl. Phys. Lett. 100(19), 193114 (2012)CrossRefGoogle Scholar
  36. 44.36
    M. Zhu, L. Wu, Z. Song, F. Rao, D. Cai, C. Peng, X. Zhou, K. Ren, S. Song, B. Liu, S. Feng: Ti10Sb60Te30 for phase change memory with high-temperature data retention and rapid crystallization speed, Appl. Phys. Lett. 100(12), 122101 (2012)CrossRefGoogle Scholar
  37. 44.37
    C. Peng, L. Wu, F. Rao, Z. Song, P. Yang, H. Song, K. Ren, X. Lin, M. Zhu, B. Liu, J. Chu: W-Sb-Te phase-change material: A candidate for the trade-off between programming speed and data retention, Appl. Phys. Lett. 101(12), 122108 (2012)CrossRefGoogle Scholar
  38. 44.38
    Y.C. Her, Y.S. Hsu: Optical properties and crystallization characteristics of Ge-doped Sb70Te30 phase change recording film, Jpn. J. Appl. Phys. 42, 804 (2003)CrossRefGoogle Scholar
  39. 44.39
    Y.S. Hsu, Y.C. Her, S.T. Cheng, S.Y. Tsai: Thermal-and laser-induced order-disorder switching of In-doped fast-growth Sb70Te30 phase-change recording films, IEEE Trans. Magn. 43(2), 936–938 (2007)CrossRefGoogle Scholar
  40. 44.40
    Y.S. Hsu, Y.C. Her, S.T. Cheng, S.Y. Tsai: Thermal-and laser-induced order-disorder switching of Ag-doped fast-growth Sb70Te30 phase-change recording films, Jpn. J. Appl. Phys. 46(6S), 3945 (2007)CrossRefGoogle Scholar
  41. 44.41
    C. Peng, Z. Song, F. Rao, L. Wu, M. Zhu, H. Song, B. Liu, X. Zhou, D. Yao, P. Yang, J. Chu: Al1.3Sb3Te material for phase change memory application, Appl. Phys. Lett. 99(4), 043105 (2011)CrossRefGoogle Scholar
  42. 44.42
    F. Wang, T. Zhang, C. Liu, Z. Song, L. Wu, B. Liu, S. Feng, B. Chen: Au doped Sb3Te phase-change material for C-RAM device, Appl. Surf. Sci. 254(8), 2281–2284 (2008)CrossRefGoogle Scholar
  43. 44.43
    Y. Cheng, Z. Song, Y. Gu, S. Song, F. Rao, L. Wu, B. Liu, S. Feng: Influence of silicon on the thermally-induced crystallization process of Si-Sb4Te phase change materials, Appl. Phys. Lett. 99(26), 261914 (2011)CrossRefGoogle Scholar
  44. 44.44
    G.X. Wang, Q.H. Nie, X. Shen, R.P. Wang, L.C. Wu, J. Fu, T.F. Xu, S.X. Dai: Phase change behaviors of Zn-doped Ge2Sb2Te5 films, Appl. Phys. Lett. 101, 051906 (2012)CrossRefGoogle Scholar
  45. 44.45
    K.F. Kao, C.M. Lee, M.J. Chen, M.J. Tsai, T.S. Chin: Ga2Te3Sb5 – A candidate for fast and ultralong retention phase-change memory, Adv. Mater. 21(17), 169509 (2009)CrossRefGoogle Scholar
  46. 44.46
    G.X. Wang, X. Shen, Y.G. Lu, S.X. Dai, Q.H. Nie, T.F. Xu: Understanding the role of Zn in improving the phase change behaviors of Sb2Te3 films, Thin Solid Films 585, 57–65 (2015)CrossRefGoogle Scholar
  47. 44.47
    X. Shen, G.X. Wang, R.P. Wang, S.X. Dai, L.C. Wu, Y.M. Chen, T.F. Xu, Q.H. Nie: Enhanced thermal stability and electrical behavior of Zn-doped Sb2Te films for phase change memory application, Appl. Phys. Lett. 102, 131902 (2013)CrossRefGoogle Scholar
  48. 44.48
    G.X. Wang, X. Shen, Q.H. Nie, T.F. Xu, S.X. Dai, Y.G. Lu, Y.M. Chen, J.J. Li: Characterization of physical properties for Zn-doped Sb3Te films, Appl. Phys. Express 6, 095801 (2013)CrossRefGoogle Scholar
  49. 44.49
    G.X. Wang, X. Shen, Q.H. Nie, R.P. Wang, L.C. Wu, Y.G. Lu, S.X. Dai, T.F. Xu, Y.M. Chen: Improved phase-change characteristics of Zn-doped amorphous Sb7Te3 films for high-speed and low-power phase change memory, Appl. Phys. Lett. 103, 031914 (2013)CrossRefGoogle Scholar
  50. 44.50
    K.M.F. Shahil, M.Z. Hossain, V. Goyal, A.A. Balandin: Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials, J. Appl. Phys. 111(5), 054305 (2012)CrossRefGoogle Scholar
  51. 44.51
    J.S. Wei, H. Yuan, F.X. Gan: Crystallization mechanism and course of the Ge2Sb2Te5 thin films under focused pulse laser, J. Inorg. Mater. 17(6), 1245–1252 (2002)Google Scholar
  52. 44.52
    D.W. Zeng, C.S. Xie, B.L. Zhu, W.L. Song: Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method, Mater. Lett. 58(3/4), 312–315 (2004)CrossRefGoogle Scholar
  53. 44.53
    J. Rocca, M. Erazu, M. Fontana, B. Arcondo: Crystallization process on amorphous GeTeSb samples near to eutectic point Ge15Te85, J. Non-Cryst. Solids 355, 2068–2073 (2009)CrossRefGoogle Scholar
  54. 44.54
    J. Coombs, A. Jongenelis, W. van Es-Spiekman, B. Jacobs: Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth, J. Appl. Phys. 78, 4906–4917 (1995)CrossRefGoogle Scholar
  55. 44.55
    J. Park, M.R. Kim, W.S. Choi, H. Seo, C. Yeon: Characterization of amorphous phases of Ge2Sb2Te5 phase-change optical recording material on their crystallization behavior, Jpn. J. Appl. Phys. 38, 4775 (1999)CrossRefGoogle Scholar
  56. 44.56
    J. Kalb, F. Spaepen, M. Wuttig: Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys, Appl. Phys. Lett. 84, 5240–5242 (2004)CrossRefGoogle Scholar
  57. 44.57
    S. Raoux, K. Virwani, C. Cabral Jr, L. Krusin-Elbaum, J.L. Jordan-Sweet, M. Hitzbleck, M. Salinga, A. Madan, T.L. Pinto: Phase transitions in Ge-Sb phase change materials, J. Appl. Phys. 105(6), 064918 (2009)CrossRefGoogle Scholar
  58. 44.58
    T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R.O. Jones, N. Yamada, M. Takata, R. Kojima: From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials, Nat. Mater. 10, 129–134 (2011)CrossRefGoogle Scholar
  59. 44.59
    J. Hegedüs, S. Elliott: Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials, Nat. Mater. 7, 399–405 (2008)CrossRefGoogle Scholar
  60. 44.60
    I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wutting: Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements, J. Appl. Phys. 87, 4130–4134 (2000)CrossRefGoogle Scholar
  61. 44.61
    Y. Choi, M. Jung, Y.-K. Lee: Effect of heating rate on the activation energy for crystallization of amorphous Ge2Sb2Te5 thin film, Electrochem. Solid-State Lett. 12, F17–F19 (2009)CrossRefGoogle Scholar
  62. 44.62
    J. Orava, A. Greer, B. Gholipour, D. Hewak, C. Smith: Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry, Nat. Mater. 11, 279–283 (2012)CrossRefGoogle Scholar
  63. 44.63
    H.E. Kissinger: Reaction kinetics in differential thermal analysis, Anal. Chem. 29, 1702–1706 (1957)CrossRefGoogle Scholar
  64. 44.64
    M. Ediger, P. Harrowell, L. Yu: Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity, J. Chem. Phys. 128, 034709 (2008)CrossRefGoogle Scholar
  65. 44.65
    C.V. Thompson, F. Spaepen: On the approximation of the free energy change on crystallization, Acta Metall. 27, 1855–1859 (1979)CrossRefGoogle Scholar
  66. 44.66
    S. Raoux, D. Ielmini: Phase change materials and their application to nonvolatile memories, Chem. Rev. 110, 240–267 (2009)CrossRefGoogle Scholar
  67. 44.67
    M.H. Cohen, G. Grest: Liquid-glass transition, a free-volume approach, Phys. Rev. B 26, 6313 (1982)CrossRefGoogle Scholar
  68. 44.68
    M.L.F. Nascimento, E. Dutra Zanotto: Does viscosity describe the kinetic barrier for crystal growth from the liquids to the glass transition?, J. Chem. Phys. 133, 174701 (2010)CrossRefGoogle Scholar
  69. 44.69
    J. Orava, D.W. Hewak, A.L. Greer: Fragile-to-strong crossover in supercooled liquid Ag-In-Sb-Te studied by ultrafast calorimetry, Adv. Funct. Mater. 25, 4851–4858 (2015)CrossRefGoogle Scholar
  70. 44.70
    C. Zhang, L. Hu, Y. Yue, J.C. Mauro: Fragile-to-strong transition in metallic glass-forming liquids, J. Chem. Phys. 133, 014508 (2010)CrossRefGoogle Scholar
  71. 44.71
    B. Chen, J. Momand, P.A. Vermeulen, B.J. Kooi: Crystallization kinetics of supercooled liquid Ge–Sb based on ultrafast calorimetry, Cryst. Growth Des. 16, 242 (2015)CrossRefGoogle Scholar
  72. 44.72
    Y. Chen, G. Wang, L. Song, X. Shen, J. Wang, J. Huo, R. Wang, T. Xu, S. Dai, Q. Nie: Unraveling the crystallization kinetics of supercooled liquid GeTe by ultrafast calorimetry, Cryst. Growth Des. 17, 3687 (2017)CrossRefGoogle Scholar
  73. 44.73
    A. Sebastian, M. Le Gallo, D. Krebs: Crystal growth within a phase change memory cell, Nat. Commun. 5, 4314 (2014)CrossRefGoogle Scholar
  74. 44.74
    B.-S. Lee, K. Darmawikarta, S. Raoux, Y.-H. Shih, Y. Zhu, S.G. Bishop, J.R. Abelson: Distribution of nanoscale nuclei in the amorphous dome of a phase change random access memory, Appl. Phys. Lett. 104, 071907 (2014)CrossRefGoogle Scholar
  75. 44.75
    W.H.P. Pernice, H. Bhaskaran: Photonic non-volatile memories using phase change materials, Appl. Phys. Lett. 101(17), 171101 (2012)CrossRefGoogle Scholar
  76. 44.76
    C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C.D. Wright, H. Bhaskaran, W.H.P. Pernice: Integrated all-photonic non-volatile multi-level memory, Nat. Photon. 9(9), 725–732 (2015)CrossRefGoogle Scholar
  77. 44.77
    E. Kuramochi, M. Notomi: Optical memory: Phase-change memory, Nat. Photon. 9(11), 712–714 (2015)CrossRefGoogle Scholar
  78. 44.78
    C. Rios, P. Hosseini, C.D. Wright, H. Bhaskaran, W.H.P. Pernice: On-chip photonic memory elements employing phase-change materials, Adv. Mater. 26(9), 1372–1377 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Infrared Materials & DevicesNingbo UniversityNingboChina
  2. 2.Dept. of Microelectronic Science and Engineering, Faculty of ScienceNingbo UniversityNingbo CityChina

Personalised recommendations