Advertisement

Laser Glasses

  • Simi A. GeorgeEmail author
  • Joseph S. Hayden
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Bulk solid-state lasers (s) are a preferred class of lasers for high peak power and high average power generation due to their technological simplicity and economical power scaling. At the heart of a bulk SSL is a crystalline or amorphous material doped with transition metal ions or rare-earth elements. The focus of this chapter is a special subset of gain materials used for bulk solid-state laser emission, namely multicomponent glasses. A broad discussion on why glass is ideally suited for many laser applications along with methods used for assessing the many optical, thermal, mechanical and laser properties is presented. A detailed survey of spectroscopic methods used for the first-order approximation of laser performance from \(\mathrm{Er^{3+}}\)- and \(\mathrm{Nd^{3+}}\)-doped glasses is given. A few critical considerations for high-quality laser glass and components manufacturing is given in the final sections.

Notes

Acknowledgements

This chapter builds on a previous publication, namely the section Laser Glasswithin the following chapter: M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M.J. Davis, T.E. Bauer, H. Ren, Y.-H. Fan, Y. Menke, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, R.A. Paquin: Optical materials and their properties, In: F. Träger (ed.): Springer Handbook of Lasers and Optics, 2nd edn. (Springer, Heidelberg 2012) pp. 253–399. It has been thoroughly revised and updated.

References

  1. T.H. Maiman: Stimulated optical radiation in ruby, Nature 187, 493 (1960)Google Scholar
  2. R.G. Gould: The LASER, light amplification by stimulated emission of radiation. In: Proc. Ann Arbor Conf. Opt. Pump., Univ. Michigan, ed. by P.A. Franken, R.H. Sands (1959) p. 128Google Scholar
  3. O. Svelto: Principles of Lasers, 5th edn. (Springer, Heidelberg 2010), trans. David HannaCrossRefGoogle Scholar
  4. A.E. Siegman: Lasers (University Science Books, Mill Valley 1986)Google Scholar
  5. F. Träger: Handbook of Lasers and Optics, 2nd edn. (Springer, Berlin 2012)CrossRefGoogle Scholar
  6. Y.O. Aydin, V. Fortin, F. Maes, F. Jobin, S.D. Jackson, R. Vallée, M. Bernier: Diode-pumped mid-infrared fiber laser with 50% slope efficiency, Optica 4(2), 235–238 (2017)CrossRefGoogle Scholar
  7. S. Duval, J.-C. Gauthier, L.-R. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, R. Vallée: Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 \({\upmu}\)m, Opt. Lett. 41(22), 5294–5297 (2016)CrossRefGoogle Scholar
  8. X. Jiang, N.Y. Joly, M.A. Finger, F. Babic, M. Pang, R. Sopalla, M.H. Frosz, S. Poulain, M. Poulain, V. Cardin, J.C. Travers, P.S.J. Russell: Supercontinuum generation in ZBLAN glass photonic crystal fiber with six nanobore cores, Opt. Lett. 41(18), 4245–4248 (2016)CrossRefGoogle Scholar
  9. C. Kneis, B. Donelan, I. Manek-Hönninger, T. Robin, B. Cadier, M. Eichhorn, C. Kieleck: High-peak-power single-oscillator actively Q-switched mode locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber, Opt. Lett. 41(11), 2543–2548 (2016)CrossRefGoogle Scholar
  10. M.R. Majewski, S.D. Jackson: Highly efficient mid-infrared dysprosium fiber laser, Opt. Lett. 41(10), 2173–2716 (2016)CrossRefGoogle Scholar
  11. J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, M. Bernier: Mid-IR supercontinuum from 2.4 to 5.4 \({\upmu}\)m in a low-loss fluoroindate fiber, Opt. Lett. 41(8), 1756–1759 (2016)CrossRefGoogle Scholar
  12. G.H. Dieke: Spectra and Energy Levels of Rare Earth Ions in Crystals (Wiley, New York 1968)Google Scholar
  13. W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana: A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3, J. Chem. Phys. 90(7), 3443–3457 (1989)CrossRefGoogle Scholar
  14. R. Withnall, J. Silver: Physics of light emission from rare-earth doped phosphors. In: Handbook of Visual Display Technology, ed. by J. Chen, W. Cranton, M. Fihn (Springer, Berlin 2012)Google Scholar
  15. W.H. Zachariasen: The atomic arrangement in glass, J. Am. Chem. Soc. 54(10), 3841–3851 (1932)CrossRefGoogle Scholar
  16. M. Bass: Properties of Crystals and Optics. In: Handbook of Optics: Volume IV – Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3rd edn., ed. by M. Bass (McGraw-Hill, New York 2010)Google Scholar
  17. R. Paschotta (Ed.): Encyclopedia of Laser Physics and Technology, 1st edn. (Wiley-VCH, Weinheim 2008)Google Scholar
  18. P. Hartmann: Optical Glass (SPIE, Bellingham 2014)CrossRefGoogle Scholar
  19. P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, M. Fokine: Optical glass and glass ceramic historical aspects and recent developments: A Schott view, Appl. Opt. 49, D157–D176 (2010)CrossRefGoogle Scholar
  20. J.H. Campbell, M.J. McLean, R.A. Hawley-Fedder, I.T. Suratwala, G. Ficini-Dorn, J.-H. Trombest: Development of continuous glass melting for production of Nd-doped phosphate glasses for the NIF and LMJ laser systems, Proc. SPIE (1999),  https://doi.org/10.1117/12.354192CrossRefGoogle Scholar
  21. J.L. Emmett, W.F. Krupke, J.B. Trenholme: The Future Development of High-Power Solid State Laser Systems (Lawrence Livermore National Laboratory, Livermore 1982), UCRL-53344Google Scholar
  22. A.H. Clauer: New Life for Laser Shock Processing, Ind. Laser Rev. 1996(March), 7–9 (1996)Google Scholar
  23. J.H. Kunishige, D.M. Friedman: Nonablative laser and light sources. In: Cosmetic Dermatology, ed. by A. Musad, H.B. Gladstone, R.C. Tung (Elsevier, Amsterdam 2009) pp. 139–141Google Scholar
  24. M. Silver, S.T. Lee, A. Borthwick, I. McRae, D. Jackson, W. Alexander: Compact, diode-pumped, solid-state lasers for next generation defence and security sensors, J. Phys. Conf. Ser. 619, 012022 (2015)CrossRefGoogle Scholar
  25. J.S. Hayden, Y.T. Hayden, J.H. Campbell: Effect of composition on the thermal, mechanical, and optical properties of phosphate laser glasses, Proc. SPIE (1990),  https://doi.org/10.1117/12.20590CrossRefGoogle Scholar
  26. S.E. Stokowski, R.A. Saroyan, M.J. Weber: Laser glass: Nd-doped glass spectroscopic and physical properties, Vol. M-95, Rev. 2 (Lawrence Livermore National Laboratory, Livermore 1981) pp. 1–9Google Scholar
  27. E. Snitzer: Optical laser action of Nd3+ in a barium crown glass, Phys. Rev. Lett. 7, 444–446 (1961)CrossRefGoogle Scholar
  28. J.H. Campbell, T.I. Suratwala: Nd-doped phosphate glasses for high-energy/high-peak-power lasers, J. Non-Cryst. Solids 263/264, 318–341 (2000)CrossRefGoogle Scholar
  29. J.H. Pitts: Modeling laser damage caused by platinum inclusions in laser glass. In: Proc. Laser Induc. Damage Opti. Mater., Boulder Damage Symp., Boulder, USA (1985) pp. 537–542Google Scholar
  30. J.H. Campbell, E.P. Wallerstein, J.S. Hayden, D.L. Sapak, D.E. Warrington, A.J. Marker III, H. Toratani, H. Meissner, S. Nakajima, T. Izumitani: Elimination of Platinum Inclusions in Phosphate Laser Glasses (Lawrence Livermore National Laboratory, Livermore 1989), UCRL-53932Google Scholar
  31. J.H. Campbell: Recent advances in phosphate laser glasses for high-power applications, Proc. SPIE 10286, 1028602 (1996)CrossRefGoogle Scholar
  32. A. Caird, A.J. Ramponi, P.R. Staver: Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses, J. Opt. Soc. Am. B 8, 1391–1403 (1991)CrossRefGoogle Scholar
  33. D. Pugliese, N.G. Boetti, J. Lousteau, E. Ceci-Ginistrelli, E. Bertone, F. Geobaldo, D. Milanese: Concentration quenching in an Er-doped phosphate glass for compact optical lasers and amplifiers, J. Alloy. Comp. 657, 678–683 (2016)CrossRefGoogle Scholar
  34. W. Koechner: Solid-State Laser Engineering, 6th edn. (Springer, New York 2006)Google Scholar
  35. D.L. Veasey, D.S. Funk, N.A. Sanford, J.S. Hayden: Arrays of distributed Bragg-reflector waveguide lasers at 1536 nm in Yb/Er codoped phosphate glass, Appl. Phys. Lett. 74(6), 789–791 (1999)CrossRefGoogle Scholar
  36. Advanced Optics SCHOTT AG: Refractive Index and Dispersion: TIE 29 – Technical information (2016)Google Scholar
  37. Advanced Optics SCHOTT AG: Striae in Optical Glass: TIE 25 – Technical information (2006)Google Scholar
  38. H. Vogel: Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten, Z. Phys. 22, 645 (1921)Google Scholar
  39. G. Tammann, G. Hesse: Die Abhängigkeit des Viskosität von der Temperatur bei unterkühlten Flüssigkeiten, Z. Anorg. Allg. Chem. 156, 245 (1926)CrossRefGoogle Scholar
  40. G.S. Fulcher: Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8, 339 (1925)CrossRefGoogle Scholar
  41. L. Pavesi, D.J. Lockwood (Eds.): Silicon Photonics, Vol. 1 (Springer, Berlin 2004) pp. 369–371Google Scholar
  42. G.C. Righini, M. Ferrari: Photoluminescence of rare-earth doped glasses, Riv. Nuovo Cimento 28(12), 1–53 (2005)Google Scholar
  43. D.E. McCumber: Theory of phonon-terminated optical lasers, Phys. Rev. 134, A299 (1964)CrossRefGoogle Scholar
  44. R.M. Martin: Reciprocity between Emission and Absorption for Rare Earth Ions and Glass, Ph.D. Thesis (Worcester Polytechnic Institute, Massachusetts 2006)Google Scholar
  45. S.A. George, J.S. Hayden: Spectroscopy of Nd-doped laser materials, Proc. SPIE (2014),  https://doi.org/10.1117/12.2040841CrossRefGoogle Scholar
  46. B.R. Judd: Optical absorption intensities of rare-earth ions, Phys. Rev. 127(3), 750 (1962)CrossRefGoogle Scholar
  47. G.S. Ofelt: Intensities of crystal spectra of rare-earth ions, J. Chem. Phys. 37(3), 511 (1962)CrossRefGoogle Scholar
  48. C.W. Nielson, G.F. Koster: Spectroscopic Coefficients of the pn, dn, and fn Configurations (MIT Press, Cambridge 1963)Google Scholar
  49. B.M. Walsh: Judd–Ofelt theory: Principles and practices. In: Advances in Spectroscopy for Lasers and Sensing, ed. by B. Di Bortolo, O. Forte (Springer, Dordrecht 2006) pp. 403–433CrossRefGoogle Scholar
  50. E. Desurvire, J.R. Simpson: High-gain erbium doped travelling-wave fiber amplifier, Opt. Lett. 15(10), 547–549 (1990)CrossRefGoogle Scholar
  51. W.J. Miniscalco, R.S. Quimby: General procedure for the analysis of Er3+ cross sections, Opt. Lett. 16(4), 258–260 (1991)CrossRefGoogle Scholar
  52. W.B. Fowler, D.L. Dexter: Relation between absorption and emission probabilities in luminescent centers in ionic solids, Phys. Rev. 128(5), 2154 (1962)CrossRefGoogle Scholar
  53. W.F. Krupke: Induced-emission cross-sections in neodymium laser glasses, IEEE J. Quantum Electron. 10, 450 (1974)CrossRefGoogle Scholar
  54. B.F. Aull, H.P. Jenssen: Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections, IEEE J. Quantum Electron. 18(5), 925 (1982)CrossRefGoogle Scholar
  55. L.M. Sheehan, S. Schwartz, C.L. Battersby, R.K. Dickson, R.T. Jennings, J.F. Kimmons, M.R. Kozlowski, S.M. Maricle, R.P. Mouser, M.J. Runkel, C.L. Weinzapfel: Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory, Proc. SPIE (1999),  https://doi.org/10.1117/12.344447CrossRefGoogle Scholar
  56. R. Wood: Laser Damage in Optical Materials (SPIE Optical Engineering, London 1990)Google Scholar
  57. D.C. Brown: Damage effects in high peak power Nd:Glass laser systems. In: High-Peak-Power Nd:Glass Laser Systems (Springer, Berlin, Heidelberg, New York 1981) pp. 170–187CrossRefGoogle Scholar
  58. D.H. Roach, A.R. Cooper: The effect of etch depth on strength of indented soda lime glass rods. In: Strength of Inorganic Glass, ed. by C.R. Kurkjian (Plenum, New York 1985) pp. 185–195Google Scholar
  59. W.C. LaCourse: The strength of glass. In: Introduction to Glass Science, ed. by L.D. Pye, H.J. Stevens, W.C. LaCourse (Plenum, New York 1972) pp. 451–512CrossRefGoogle Scholar
  60. T.M. Gross: Scratch damage in ion-exchanged alkali aluminosilicate glass: Crack evolution and the dependence of lateral cracking threshold on contact geometry. In: Fractography of Glasses and Ceramics VI, ed. by J.R. Varner, M. Wightman (Wiley, Hoboken 2012) pp. 113–122CrossRefGoogle Scholar
  61. R. Gardon: Thermal tempering of glass. In: Glass Science and Technology, ed. by D.R. Uhlmann, N.J. Kreidl (Elsevier, New York 1980) pp. 145–216Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SCHOTT North America, Inc.Duryea, PAUSA

Personalised recommendations