Glass Recycling

  • Ronan LebullengerEmail author
  • François O. Mear
Part of the Springer Handbooks book series (SHB)


The main objective of this chapter is to give the reader a general overview of glass recycling activity. Industrial and academic results are presented, which are useful to open new possibilities of economic activities using glass waste for environmental benefits for the society. The greatest answer to master the environmental effect of glass wastes is to reuse them. Recycling of these wastes principally from glass bottles and flat glasses will benefit in safeguarding the earth's natural resources, diminishing landfill places, and saving energy and money. With a number of TV sets and computers attaining their end-of-life, electronic production is also challenged with the main difficulty of dealing with used devices.


  1. A. Bartl: Moving from recycling to waste prevention: A review of barriers and enables, Waste Manag. Res. 32(9), 3–18 (2014)CrossRefGoogle Scholar
  2. C.R.C. Mohanty: Reduce, reuse and recycle (the 3Rs) and resource efficiency as the basis for sustainable waste management. In: Proc. Synerg. Resour. Effic. Informal Sect. Sustain. Waste Manag., New York (2011)Google Scholar
  3. M.R. Johnson, I.P. McCarthy: Product recovery decisions within the context of extended producer responsibility, J. Eng. Technol. Manag. 34, 9–28 (2014)CrossRefGoogle Scholar
  4. United States Environmental Protection Substance Registry Services (SRS): CAS Number for glass 65997-17-3Google Scholar
  5. E. Vieitez Rodiguez, P. Eder, A. Villanueva, H. Saveyn: End-of-Waste Criteria for Glass Cullet: Technical Proposals, JRC Scientific and Technical Reports (JRC-IPTS, Sevilla 2011)Google Scholar
  6. Glass Alliance Europe: Position paper concerning the status of the raw materials, for the production of glass, as intermediates under the EU REACH regulation, (2012)
  7. Glass Alliance Europe: The EU glass industry, Glass International (2016)Google Scholar
  8. Glass for Europe: (2014)
  9. G. Slayter: Fibrous glass product and method of manufacture, U.S. Patent US3050427A (1957)Google Scholar
  10. K.L. Loewenstein: The manufacturing technology of continuous glass fibers, Platin. Met. Rev. 19(3), 82–87 (1975)Google Scholar
  11. E. Fitzer, R. Kleinholz, H. Tiesler, M.H. Stacey, R. De Bruyne, I. Lefever, A. Foley, W. Frohs, T. Hauke, M. Heine, H. Jäger, S. Sitter: Fibers: Synthetic inorganic. In: Ullmann's Encyclopedia of Industrial Chemistry Fibers (Wiley, Weinheim 2000)Google Scholar
  12. J. Devisme: Feuille de route verre: Ensemble pour collecter et recycler plus de verre, Adelphe and Eco-emballages, and (2014)
  13. Waste and Resources Action Programme: Case Study–Lightweight Glass Containers: Understanding consumer perceptions, (2007)
  14. ISO 14044:2006: Environmental Management–Life Cycle Assessment–Requirements and Guidelines (ISO, Geneva 2006)Google Scholar
  15. F. Andreola, L. Barbieri, I. Lancelotti, C. Leonelli, T. Manfredini: Recycling of industrial wastes in ceramic manufacturing: State of art and glass case studies, Ceram. Int. 42, 13333–13338 (2016)CrossRefGoogle Scholar
  16. N. Schibille, A. Sterrett-Krause, I.C. Freestone: Glass groups, glass supply and recycling in late roman carthage, Archaeol. Anthropol. Sci. 9(6), 1223–1241 (2017)CrossRefGoogle Scholar
  17. C.M. Jackson, S. Paynter: A great big melting pot: Exploring patterns of glass supply, consumption and recycling in Roman coppergate, Archaeometry 58(1), 68–95 (2016)CrossRefGoogle Scholar
  18. Clarivate Analytics: Web of Science database, consulted on March 16, 2016 with keywords “Glass” and “Recycling”,
  19. Ecovidrio: Recycling: In the green bin, (2016)
  20. FEVE: The European Container Glass Federation,
  21. W.L. Dalmijin, J.A. van Houwelingen: Glass recycling in the Netherlands, Glass 73(4), 137–141 (1996)Google Scholar
  22. EUROSTAT: Recycling secondary material price indicator: Glass, (2016)
  23. J. Hurley: A UK Market Survey for Foam Glass (WRAP, Banbury 2013)Google Scholar
  24. B. Swain, J.R. Park, D.Y. Shin, K.S. Park, M.H. Hong, C.G. Lee: Recycling of waste automotive laminated glass and valorization of polyvinyl butyral through mechanochemical separation, Environ. Res. 142, 615–623 (2015)CrossRefGoogle Scholar
  25. R. Farel, B. Yannou, G. Bertoluci: Finding best practices for automotive glazing recycling: A network optimization model, J. Clean. Prod. 52, 446–461 (2013)CrossRefGoogle Scholar
  26. G.T.M. Bâtiment: Démarche REVALO—Qualité intégré en gros œuvre. In: Synth. Conv. ADEME 1206C0071 (2014), http://www.ademe.frGoogle Scholar
  27. Fédération des Industries du Verre: (2015)
  28. Vlakglas Recyling Nederland: (2016)
  29. AGC Glass Europe: Demonstration of an innovative fine crushing method for glass and alternative cullet in flat glass production, (2016)
  30. S. Feih, A.P. Mouritz, S.W. Case: Determining the mechanism controlling glass fiber strength loss during thermal recycling of waste composites, Composites A 76, 255–261 (2015)CrossRefGoogle Scholar
  31. H. Li, C. Richards, J. Watson: High-performance glass fiber development for composite applications, Int. J. Appl. Glass Sci. 5(1), 65–81 (2014)CrossRefGoogle Scholar
  32. E. Asmatulu, J. Twomey, M. Overcash: Recycling of fiber-reinforced composites and direct structural composite recycling concept, J. Compos. Mater. 48(5), 593–608 (2014)CrossRefGoogle Scholar
  33. G. Oliveux, J.L. Bailleul, E.L. La Salle: Chemical recycling of glass fiber reinforced composites using subcritical water, Composites A 43, 1809–1818 (2012)CrossRefGoogle Scholar
  34. S. Job: Recycling glass fibre reinforced composites—history and progress, J. Reinf. Plast. Compos. 33(16), 1542–1556 (2014)CrossRefGoogle Scholar
  35. M.A. Imteaz, M.M.Y. Ali, A. Arulrajah: Possible environmental impacts of recycled glass used as a pavement base material, Waste Manag. Res. 30(9), 917–921 (2012)CrossRefGoogle Scholar
  36. S. Mohsenian: Current state of the art practice of use of glass in pavement structures. In: Proc. Innov. Pavement Mater. Surf. Technol. Conf. Transp. Assoc. Can., Charlottetown (2015)Google Scholar
  37. Y. Jani, W. Hogland: Waste glass in the production of cement and concrete—A review, J. Environ. Chem. Eng. 2(3), 1767–1775 (2014)CrossRefGoogle Scholar
  38. A.M. Matos, J. Sousa-Coutinho: Durability of mortar using waste glass powder as cement replacement, Constr. Build. Mater. 36, 205–215 (2012)CrossRefGoogle Scholar
  39. H. Du, K.H. Tan: Effect of particle size on alkali–silica reaction in recycled glass mortars, Constr. Build. Mater. 66, 275–285 (2014)CrossRefGoogle Scholar
  40. M. Keawthun, S. Krachodnok, A. Chiasena: Conversion of waste glasses into sodium silicate solutions, Int. J. Chem. Sci. 12(1), 83–91 (2014)Google Scholar
  41. Z.M. Veloza, K. Yanagizawa, N. Yamasaki: Recycling waste glass by means of the hydrothermal hot pressing method, J. Mater. Sci. Lett. 18, 1811–1813 (1999)CrossRefGoogle Scholar
  42. N.J. Coleman: 11 Å tobermorite ion exchanger from recycled container glass, Int. J. Environ. Waste Manag. 8, 366–382 (2011)CrossRefGoogle Scholar
  43. P. Lavender: Filter media: Treating chemical wastewaters, Filtr. Sep. 45(4), 16–18 (2008)CrossRefGoogle Scholar
  44. M. Marshall, J. Henderson: New approaches to the challenge of CRT recycling. In: Recycling and Reuse of Glass Cullet, ed. by T. Telford (2001) pp. 75–83Google Scholar
  45. F. Andreola, L. Barbieri, A. Corradi, I. Lancellotti, R. Falcone, S. Hreglich: Class-ceramics obtained by the recycling of end of life cathode ray tubes glass, Waste Manag. 25, 183–189 (2005)CrossRefGoogle Scholar
  46. C. Gable, B. Shireman: Computer and electronic product stewardship: Are we ready for the challenge?, Environ. Qual. Manag. 11(1), 35–45 (2001)CrossRefGoogle Scholar
  47. S.E. Musson, Y.-C. Jang, T.G. Townsend, I.-H. Chung: Characterization of lead leachability from cathode ray tubes using the toxicity characteristic leaching procedure, Environ. Sci. Technol. 34, 4376–4381 (2000)CrossRefGoogle Scholar
  48. J.P. Desgeorges: Objective Concerning the Re-use of End of Life Electric and Electronic Products, Report for the French Ministère de l'environnement (Paris 1992)Google Scholar
  49. V. Palm: Environmental Hazards Connected to the Composition of Cathode-Ray Tubes and Cabinets, Report Swedish Environmental Research Institute (Stockholm 1995)Google Scholar
  50. N. Menad: Cathode-ray tube recycling, Res. Conserv. Recycl. 26, 143–154 (1999)CrossRefGoogle Scholar
  51. F.O. Mear, P. Yot, M. Cambon, M. Ribes: The characterization of waste cathode-ray tube glass, Waste Manag. 26, 1468–1476 (2006)CrossRefGoogle Scholar
  52. Commission Européenne: Recycling of end-of-life cathode ray tube glass, (1996)
  53. E. Döring: TV glass recycling in Europe—description of the situation and possibilities, (2002)
  54. Industry Council for Electronics Equipment Recycling: Material Recovery from Waste Cathode Ray Tubes (CRTs) (WRAP, Banbury 2004)Google Scholar
  55. A.S. Smith: Recycled CRT Panel Glass as an Energy Reducing Fluxing Body Additive in Heavy Clay Construction Products (WRAP, Banbury 2004)Google Scholar
  56. F. Andreola, L. Barbieri, A. Corradi, I. Lancellotti: CRT glass state of the art—A case study: Recycling in ceramic glazes, J. Eur. Ceram. Soc. 27(2–3), 1623–1629 (2007)CrossRefGoogle Scholar
  57. Industry Council for Electronics Equipment Recycling: New Approach to Cathode Ray Tube (CRT) Recycling (Department of Trade and Industry, London 2003)Google Scholar
  58. D.H. Weitzman: Is CRT glass-to-lead recycling safe and environmentally friendly? In: IEEE Int. Symp. Electron. Environ (2003) pp. 329–334Google Scholar
  59. M. Chen, F.S. Zhang, J. Zhu: Lead recovery and the feasibility of foam glass production from funnel glass of dismantled cathode ray tube through pyrovacuum process, J. Hazard. Mater. 161, 1109–1113 (2009)CrossRefGoogle Scholar
  60. T. Okada: Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass, Waste Manag. 33, 1758–1763 (2013)CrossRefGoogle Scholar
  61. H. Inano: Effect of alkali metal oxide on Pb recovery from the waste CRT glass by reduction melting method. In: Design for Innovative Value Towards a Sustainable Society, ed. by M. Matsumoto, Y. Umeda, K. Masui, S. Fukushige (Springer, Dordrecht 2012)Google Scholar
  62. W. Meng, X. Wang, W. Yuan, J. Wang, G. Song: The recycling of leaded glass in cathode ray tube (CRT), Procedia Environ. Sci. 31, 954–960 (2016)CrossRefGoogle Scholar
  63. F. Andreola, L. Barbieri, A. Corradi, I. Lancellotti: Cathode ray tube glass recycling: An example of clean technology, Waste Manag. Res. 23, 314–321 (2005)CrossRefGoogle Scholar
  64. G.W. Mc Lellan, E.B. Shand: Glass Engineering Handbook (McGraw-Hill, New York 1984)Google Scholar
  65. G. Scarini, G. Brusatin, E. Bernardo: Glass Foams. In: Cellular Ceramics: Structure, Manufacturing, Properties and Applications, ed. by M. Scheffler, P. Colombo (Wiley, Weinheim 2006)Google Scholar
  66. F.O. Méar, P. Yot, R. Viennois, M. Ribes: Mechanical behaviour and thermal and electrical properties of foam glass, Ceram. Int. 33, 543–550 (2007)CrossRefGoogle Scholar
  67. R.R. Petersen, J. König, Y. Yue: The viscosity window of the silicate glass foam production, J. Non-Cryst. Solids 456, 49–54 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Physics – Rennes (IPR), UMR CNRS 6251 Institute of Chemical Sciences Rennes (ISCR) UMR CNRS 6226University of Rennes 1RennesFrance
  2. 2.Lille UniversityLilleFrance

Personalised recommendations