Advertisement

Batch Chemistry and Reactions

  • Oscar S. Verheijen
  • Mathieu HubertEmail author
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

In industrial glass production, a batch composed of a mix of raw materials is introduced in the furnace at high temperatures, to be converted into a glass melt, which will then be shaped into the desired article. The batch-to-melt conversion is a critical process, involving a sequence of reactions (dehydration, solid-state reactions, formation of primary melt phases, dissolution of sand grains), the nature and rate of which depend on both thermodynamics and kinetics. Heat transfers to the batch are of major importance, as the rate of batch-to-melt conversion has a direct impact on the energy required for melting the glass, and therefore on the production costs. After the batch-to-melt conversion, the melt will contain a large amount of bubbles and dissolved gases, and a proper fining is required to obtain a product with good quality.

In this chapter, the different reactions taking place during the batch-to-melt conversion and the fining of the melt are described. Specific attention is given to the heat transfer mechanisms, kinetics, and the silica (sand) grain dissolution mechanisms. The consequences of batch-to-melt and fining reactions in an industrial furnace (foaming, refractory corrosion) are also mentioned.

References

  1. D. Dollimore, J.G. Dunn, Y.F. Lee, B.M. Penrod: The decrepitation of dolomite and limestone, Thermochim. Acta 237(1), 125–131 (1994)CrossRefGoogle Scholar
  2. O.S. Verheijen, A. Habraken, A. Lankhorst, H. Gramberg, S. Lessmann, M. van Kersbergen: Detailed modeling of glass furnace regenerators. In: 12th ESG Conf., Parma (2014)Google Scholar
  3. C. Kröger, H. Eligehausen: Über das Wärmeleitvermögen des einschmelzenden Glasgemenges, Glastech. Ber. 32(9), 362–373 (1959)Google Scholar
  4. M. Daniels: Einschmelzverhalten von Glasgemengen, Glastechnische Berichte 46(3), 40–46 (1973)Google Scholar
  5. P. Costa: Untersuchung des Einschmelzverhaltens von pelletiertem Gemenge zur Glasherstellung, Glastech. Ber. 50(1), 10–18 (1977)Google Scholar
  6. W. Trier, K.L. Loewenstein: Glass Furnaces: Design, Construction and Operation (Society of Glass Technology, Sheffield 1987)Google Scholar
  7. A.J. Faber, R.G.C. Beerkens, H. de Waal: Thermal behaviour of glass batch on batch heating, Glastech. Ber. 65(7), 177–185 (1992)Google Scholar
  8. R. Conradt, P. Suwannathada, P. Pimkhaokham: Local temperature distribution and primary melt formation in a melting batch heap, Glastech. Ber. 67(5), 103–113 (1994)Google Scholar
  9. O.S. Verheijen: Thermal and Chemical Behavior of Glass Forming Batches, Ph.D. Thesis (Technical Univ. Eindhoven, Eindhoven 2003)Google Scholar
  10. C. Kröger: Theoretischer Wärmebedarf der Glasschmelzprozesse, Glastech. Ber. 26(7), 202–214 (1953)Google Scholar
  11. R. Conradt, P. Pimkhaokham: An easy-to-apply method to estimate the heat demand for melting technical silicate glasses, Glastech. Ber. 63, 134–143 (1990)Google Scholar
  12. C. Madivate, F. Muller, W. Wilsmann: Thermochemistry of the glass melting process—Energy requirement in melting soda-lime-silica glasses from cullet-containing batches, Glastech. Ber. 69(6), 167–178 (1996)Google Scholar
  13. C. Kröger: Gemengereaktionen und Glasschmelze, Glastech. Ber. 25(10), 307–324 (1952)Google Scholar
  14. F.W. Wilburn, S.A. Metcalfe, R.S. Warburton: Differential thermal analysis, differential thermogravimetric analysis, and high temperature microscopy of reactions between the major components of a sheet glass batch, Glass Technol. 6(4), 107–114 (1965)Google Scholar
  15. K. Kautz, G. Stromburg: Untersuchungen der Vorgänge beim Einschmelzen von Glasgemengen im Gadrientofen, Glastech. Ber. 42(7), 309–317 (1969)Google Scholar
  16. P. Hrma: Reaction between sodium carbonate and silica at 874 °C < T < 1022 °C, J. Am. Ceram. Soc. 68(6), 337–341 (1985)CrossRefGoogle Scholar
  17. C.A. Sheckler, D.R. Dinger: Effect of particle size distribution on the melting of soda-lime-silica glass, J. Am. Ceram. Soc. 73(1), 24–30 (1990)CrossRefGoogle Scholar
  18. K.S. Hong, R.E. Speyer: Thermal analysis of reactions in soda-lime silicate glass batches containing melting accelerants: I, One- and two-component systems, J. Am. Ceram. Soc. 76(3), 598–604 (1993)CrossRefGoogle Scholar
  19. K.S. Hong, S.W. Lee, R.E. Speyer: Thermal analysis of reactions in soda-lime silicate glass batches containing melting accelerants: II, Multicomponent systems, J. Am. Ceram. Soc. 76(3), 605–608 (1993)CrossRefGoogle Scholar
  20. L. Stoch, S. Kraishan: Interface phenomena accompanying the early stages of glass batch reactions: A model study, Glastech. Ber. 70(10), 298–305 (1997)Google Scholar
  21. E. Gouillart, M.J. Toplis, J. Grynberg, M.-H. Chopinet, E. Sondergard, L. Salvo, M. Suéry, M. Di Michiel, G. Varoquaux: In situ synchrotron microtomography reveals multiple reaction pathways during soda-lime glass synthesis, J. Am. Ceram. Soc. 95(5), 1504–1507 (2012)CrossRefGoogle Scholar
  22. J. Grynberg, E. Gouillart, M.-H. Chopinet, M.J. Toplis: Importance of the atmosphere on the mechanisms and kinetics of reactions between silica and sodium carbonate, Int. J. Appl. Glass Sci. 6(4), 428–437 (2015)CrossRefGoogle Scholar
  23. P.K. Gallagher, D.W. Johnson: The effects of sample size and heating rate on the kinetics of the thermal decomposition of CaCO3, Thermochem. Acta 6, 67–83 (1973)CrossRefGoogle Scholar
  24. P.K. Gallagher, D.W. Johnson: Kinetics of the thermal decomposition of CaCO3 in CO2 and some observations on the kinetic compensation effect, Thermochem. Acta 14, 255–261 (1976)CrossRefGoogle Scholar
  25. J.M. Criado, A. Ortega: A study of the influence of particle size on the thermal decomposition of CaCO3 by means of constant rate thermal analysis, Thermochem. Acta 195, 163–167 (1992)CrossRefGoogle Scholar
  26. M. Olszak-Humienik, J. Mozejko: Kinetics of thermal decomposition of dolomite, J. Thermal Anal. Calorim. 56, 829–833 (1999)CrossRefGoogle Scholar
  27. B.V. L'vov: Mechanism and kinetics of thermal decomposition of carbonates, Thermochem. Acta 386, 1–16 (2002)CrossRefGoogle Scholar
  28. D.W. Ready, A.R. Cooper: Molecular diffusion with a strong moving boundary and spherical symmetry, Chem. Eng. Sci. 21, 917–922 (1966)CrossRefGoogle Scholar
  29. M. Muhlbauer, L. Nemec: Dissolution of glass sand, Am. Ceram. Soc. Bull. 64(11), 1471–1475 (1985)Google Scholar
  30. L. Bodalbhai, P. Hrma: The dissolution of silica grains in isothermally heated batches of sodium carbonate and silica sand, Glass Technol. 27(2), 72–78 (1986)Google Scholar
  31. R.G.C. Beerkens, H.P.H. Muijsenberg, T. van der Heijden: Modelling of sand grain dissolution in industrial glass melting tanks, Glastech. Ber. Glass Sci. Technol. 67, 179–188 (1994)Google Scholar
  32. P. Hrma, J. Marcial: Dissolution retardation of solid silica during glass-batch melting, J. Non-Cryst. Solids 357, 2954–2959 (2011)CrossRefGoogle Scholar
  33. P. Hrma, J. Marcial, K.J. Swearingen, S.H. Henager, M.J. Schweiger, N.E. TeGrotenhuis: Conversion of batch to molten glass, II: Dissolution of quartz particles, J. Non-Cryst. Solids 357(3), 820–828 (2011)CrossRefGoogle Scholar
  34. A. Ungan, R. Viskanta: Melting behavior of continuously charged loose batch blankets in glass melting furnaces, Glastechnische Berichte 59(10), 279–291 (1986)Google Scholar
  35. NCNG: Glass Technology Course Textbook (2012)Google Scholar
  36. E.M. Levin, C.R. Robbins, H.F. McMurdie: Phase Diagrams for Ceramics (The American Ceramic Society, Westesville 1964)Google Scholar
  37. FactSage: Centre for Research in Computational Thermochemistry, Ecole Polytechnique, http://gtt-technologies.de/factsage (Montreal, Quebec 1976–2018)
  38. B.A. Shakhmatkin, N.M. Vedishcheva, C.A. Wright: Thermodynamic properties: A reliable instrument for predicting glass properties, Proc. Int. Congr. Glass, Edinburgh 1, 52–60 (2001)Google Scholar
  39. R.G.C. Beerkens: Modeling of the melting process in industrial glass furnaces. In: Mathematical Simulation in Glass Technology, ed. by D. Krause, H. Loch (Springer, Berlin Heidelberg 2002) pp. 17–72CrossRefGoogle Scholar
  40. R. Beerkens: Sulphur chemistry and sulphate fining and foaming of glass melts, Glass Technol. 48(1), 41–52 (2007)Google Scholar
  41. A.J. Faber, O.S. Verheijen, J.M. Simon: Redox and foaming behavior of e-glass melts. In: Advances in Fusion Processing of Glass III, ed. by J.L. Vorner, T.P. Seward III, H.A. Schaeffes (American Ceramic Society, Westerville 2004) pp. 71–82Google Scholar
  42. P. Laimbock: Foaming of Glass Melts, Ph.D. Thesis (Technical Univ. Eindhoven, Eindhoven 1998)Google Scholar
  43. J.E. Shelby: Introduction to Glass Science and Technology, 2nd edn. (Royal Society of Chemistry, London 2005)Google Scholar
  44. B.M. Scalet, M.G. Munoz, A.Q. Sissa, S. Roudier, L.D. Sancho: Best Available Techniques (BAT) Reference Document for the Manufacture of Glass, JRC Reference Report (European Commission, Brussels 2013)Google Scholar
  45. R. Falcone, S. Ceola, A. Daneo, S. Maurina: The role of sulfur compounds in coloring and melting kinetics of industrial glass, Rev. Mineral Geochem. 73(1), 113–141 (2011)CrossRefGoogle Scholar
  46. M. Hujova, M. Vernerova: Influence of fining agents on glass melting: A review, Part 1, Ceramics-Silikaty 61(2), 119–126 (2017)CrossRefGoogle Scholar
  47. R.G.C. Beerkens: Sulfate decomposition and sodium oxide activity in soda–lime–silica glass melts, J. Am. Ceram. Soc. 86(11), 1893–1899 (2003)CrossRefGoogle Scholar
  48. R.G.C. Beerkens, K. Kahl: Chemistry of sulphur in soda-lime-silica glass melts, Phys. Chem. Glass. 43(4), 189–198 (2002)Google Scholar
  49. M. Rongen, M. Hubert, P. Marson, S. Lessmann, O. Verheijen: Laboratory facilities for simulation of essential process steps in industrial glass furnaces. In: 75th Conf. Glass Probl. (Wiley, Hoboken 2015) pp. 223–234Google Scholar
  50. P.C. Ross, D.D. Myers: Amber glass—40 years of lessons learned. In: The 66th Conf. Glass Probl. (Wiley, Hoboken 2008) pp. 129–139Google Scholar
  51. D. Kopsel: Solubility and vaporization of halogenides, Glastech. Ber. Glass Sci. Technol. 73(C2), 43–49 (2000)Google Scholar
  52. K.D. Kim, H.K. Kim: Redox behavior of Sn and S in alkaline earth borosilicate glass melts with 1 mol% Na2O, J. Korean Ceram. Soc. 46(3), 271–274 (2009)CrossRefGoogle Scholar
  53. M.J.M. Comte: Aluminosilicate glasses with improved fining behaviour, Patent US 8722554 B2 (2014)Google Scholar
  54. V.V. Vargin, G.A. Osadchaya: Cerium dioxide as a fining agent and decolorizer for glass, Glass Ceram. 17(2), 78–82 (1960)CrossRefGoogle Scholar
  55. K.D. Kim, H.K. Kim, J.H. Kim: Behavior of oxygen equilibrium pressure in CRT glass melts doped with Sb and Ce ions from the viewpoint of fining, J. Korean Ceram. Soc. 44(8), 419–423 (2007)CrossRefGoogle Scholar
  56. M. Hubert, A.J. Faber, H. Sesigur, F. Akmaz, S.R. Kahl, E. Alejandro, T. Maehara: Impact of redox in industrial glass melting and importance of redox control. In: 77th Conf. Glass Probl. (Wiley, Hoboken 2017) pp. 113–128CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CelSian Glass & Solar B.V.EindhovenThe Netherlands
  2. 2.Dept. of Corning Glass TechnologiesCorning Research & Development CorporationPainted PostUSA

Personalised recommendations