Advertisement

Molecular Dynamics Simulations of Oxide Glasses

  • Jincheng DuEmail author
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Molecular dynamics (), one of the most important atomistic computer simulation methods, and its applications in glass simulations is introduced in this chapter. Essential ingredients of MD simulations such as empirical potentials, thermodynamic ensembles, integration algorithms, and procedures for glass structure generation, as well as structure analysis and property calculations, are covered. MD simulations of silicate-based glasses including silica glass, sodium silicate, soda lime silicate and sodium aluminosilicate glasses, silica glass/water interfaces are given as examples. Issues such as validation of simulated structure models, empirical potential development, and extending time and length scale of simulations are discussed. The chapter concludes with an outlook on future directions of MD simulations of glasses.

Notes

Acknowledgements

The author acknowledge financial support of the Center for Performance and Design of Nuclear Waste Forms and Containers, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0016584 and National Science Foundation DMR Ceramic (project # 1508001).

References

  1. M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids (Clarendon, Oxford 1989)Google Scholar
  2. C. Massobrio, J. Du, P.S. Salmon, M. Bernasconi (Eds.): Molecular Dynamics Simulations of Disordered Materials: From Network Glasses to Phase-Change Memory Alloys, Springer Series in Material Science, Vol. 215 (Springer, Cham 2015)Google Scholar
  3. A. Leach: Molecular Modeling: Principles and Applications, 2nd edn. (Prentice Hall, Upper Saddle River 2001)Google Scholar
  4. B.J. Alder, T.E. Wainwright: Phase transition for a hard sphere system, J. Chem. Phys. 27, 1208 (1957)CrossRefGoogle Scholar
  5. A. Rahman: Correlations in the motions of atoms in liquid argon, Phys. Rev. A 136, 405 (1964)CrossRefGoogle Scholar
  6. F.H. Stillinger, A. Rahman: Molecular dynamics study of liquid water under high pressure, J. Chem. Phys. 60, 1545 (1974)CrossRefGoogle Scholar
  7. L.V. Woodcock, C.A. Angell, P. Cheeseman: Molecular dynamics studies of the vitreous state: Simple ions systems and silica, J. Chem. Phys. 65, 1565 (1976)CrossRefGoogle Scholar
  8. T.F. Soules: A molecular dynamics calculation of the structure of sodium silicate glasses, J. Chem. Phys. 71, 4570 (1979)CrossRefGoogle Scholar
  9. C. Huang, A.N. Cormack: Structural difference and phase separation on alkali silicate glasses, J. Chem. Phys. 95, 3634–3642 (1991)CrossRefGoogle Scholar
  10. C. Huang, A.N. Cormack: The structure of sodium silicate glass, J. Chem. Phys. 93, 8180–8186 (1990)CrossRefGoogle Scholar
  11. A.N. Cormack, J. Du: Molecular dynamics simulation of soda-lime-silicate glasses, J. Non-Cryst. Solids 293–295, 283–289 (2001)CrossRefGoogle Scholar
  12. L.R. Corrales, J. Du: Characterization of ion distributions near the surface of sodium containing and sodium depleted calcium aluminosilicate glass melts, J. Am. Ceram. Soc. 89, 36–41 (2006)CrossRefGoogle Scholar
  13. Y. Xiang, J. Du, M.M. Smedskjaer, J.C. Mauro: Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations, J. Chem. Phys. 139, 044507 (2013)CrossRefGoogle Scholar
  14. J. Du, L. Kokou, J.R. Rygel, Y. Chen, C. Pantano, R. Woodman, J. Belcher: Structure of cerium phosphate glasses: Molecular dynamics simulations, J. Am. Ceram. Soc. 94, 2393–2401 (2011)CrossRefGoogle Scholar
  15. H. Inoue, A. Masuno, Y. Watanabe: Modeling of the structure of sodium borosilicate glasses using pair potentials, J. Phys. Chem. B 116, 12325–12331 (2012)CrossRefGoogle Scholar
  16. K.D. Vargheese, A. Tandia, J.C. Mauro: Molecular dynamics simulations of ion-exchanged glass, J. Non-Cryst. Solids 403, 107–112 (2014)CrossRefGoogle Scholar
  17. J. Du, C.-H. Chen: Structure and lithium ion diffusion in lithium silicate glasses and at their interfaces with lithium lanthanum titanate crystals, J. Non-Cryst. Solids 358, 3531–3538 (2012)CrossRefGoogle Scholar
  18. J. Luo, K.D. Vargheese, A. Tandia, G. Hu, J.C. Mauro: Crack nucleation criterion and its application to impact indentation in glasses, Sci. Rep. 6, 23720 (2016)CrossRefGoogle Scholar
  19. J.C. Mauro, A. Tandia, K.D. Vargheese, Y.Z. Mauro, M.M. Smedskjaer: Accelerating the design of functional glasses through modeling, Chem. Mater. 28, 4267–4277 (2016)CrossRefGoogle Scholar
  20. W.H. Zachariasen: The atomic arrangement in glasses, J. Amer. Chem. Soc. 54, 3841–3851 (1932)CrossRefGoogle Scholar
  21. R.J. Bell, P. Dean: Properties of vitreous silica: Analysis of random network models, Nature 212, 1354–1135 (1966)CrossRefGoogle Scholar
  22. P.H. Gaskell, I.D. Tarrant: Refinement of a random network model for vitreous silica, Philos. Mag. B 42, 265–286 (1980)CrossRefGoogle Scholar
  23. A.C. Wright, M.F. Thorpe: Eighty years of random networks, Phys. Status Solidi (b) 250, 931–936 (2013)CrossRefGoogle Scholar
  24. J. Du, L.R. Corrales: Compositional dependence of the first sharp diffraction peaks of alkali silicate glasses, J. Non-Cryst. Solids 352, 3255–3269 (2006)CrossRefGoogle Scholar
  25. J. Du: Challenges in molecular dynamics simulations of multicomponent oxide glasses. In: Molecular Dynamics Simulations of Disordered Materials: From Network Glasses to Phase-Change Memory Alloys, Springer Series in Material Science, Vol. 215, ed. by C. Massobrio, J. Du, P.S. Salom, M. Bernasconi (Springer, Cham 2015) pp. 157–180Google Scholar
  26. J. Du, A.N. Cormack: Molecular dynamics simulation of the structure and hydroxylation of silica glass surface, J. Am. Ceram. Soc. 88, 2532–2539 (2005)CrossRefGoogle Scholar
  27. A. Pedone, G. Malavasi, M.C. Menziani, A.N. Cormack, U. Segre: A new self-consistent empirical potential model for oxides, silicates and silica based glasses, J. Phys. Chem. B 110, 11780–11795 (2006)CrossRefGoogle Scholar
  28. A. Tilloca, N.H. de Leeuw, A.N. Cormack: Shell-model molecular dynamics calculations of modified silicate glasses, Phys. Rev. B 73, 104209 (2006)CrossRefGoogle Scholar
  29. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard: ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A. 105, 9396–9409 (2001)CrossRefGoogle Scholar
  30. T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H.M. Aktulga, T. Verstraelen, A. Grama, A.C.T. van Duin: The ReaxFF reactive force-field: Development, applications and future directions, NPJ Comput. Mater. 2, 15011 (2016)CrossRefGoogle Scholar
  31. J.C. Fogarty, H.M. Aktulga, A.Y. Grama, A.C.T. van Duin, S.A. Pandit: A reactive molecular dynamics simulation of the silica-water interface, J. Chem. Phys. 132, 174704 (2010)CrossRefGoogle Scholar
  32. J.M. Rimsza, J. Yeon, A.C.T. van Duin, J. Du: Water-nanoporous silica interactions: Comparison of ReaxFF and ab initio based molecular dynamics simulations, J. Phys. Chem. C 120, 24803–24816 (2016)CrossRefGoogle Scholar
  33. J. Rimsza, J. Du: Interfacial structure and evolution of the water-silica gel system by reactive force field based molecular dynamics simulations, J. Phys. Chem. C 121, 11534–11543 (2017)CrossRefGoogle Scholar
  34. J. Rimsza, L. Deng, J. Du: Molecular dynamics simulations of nanoporous silica and organosilicate glasses using reactive force field (ReaxFF), J. Non-Cryst. Solids 431, 103–111 (2016)CrossRefGoogle Scholar
  35. L.R. Corrales, J. Du: Thermal kinetics of glass simulations, Phys. Chem. Glasses 46, 420–424 (2005)Google Scholar
  36. J. Du: Molecular Dynamics Simulations of the Structures of Silicate Glasses Containing Hydroxyl Groups and Rare Earth Ions, Ph.D. Thesis (Alfred University, Alfred 2004)Google Scholar
  37. J. Du, Y. Xiang: Investigating the structure-diffusion-bioactivity relationship of strontium containing bioactive glasses using molecular dynamics based computer simulations, J. Non-Cryst. Solids 432, 35–40 (2016)CrossRefGoogle Scholar
  38. J. Du, A.N. Cormack: The medium range structure of sodium silicate glasses, J. Non-Cryst. Solids 349, 66–79 (2004)CrossRefGoogle Scholar
  39. X. Yuan, A.N. Cormack: Efficient algorithm for primitive ring statistics in topological networks, Comput. Mater. Sci. 24, 343–360 (2002)CrossRefGoogle Scholar
  40. J. Du: Molecular dynamics simulations of the structure and properties of low silica yttrium aluminosilicate glasses, J. Am. Ceram. Soc. 92, 87–95 (2009)CrossRefGoogle Scholar
  41. A. Pedone, M.C. Menziani, A.N. Cormack: Dynamic fracture in silica and soda-silicate glasses: From bulk materials to nanowires, J. Phys. Chem. C 119, 25499–25507 (2015)CrossRefGoogle Scholar
  42. J. Du, Y. Xiang: Effect of strontium substitution on the structure, ionic diffusion and dynamic properties of 45S5 Bioactive glasses, J. Non-Cryst. Solids 358, 1059–1071 (2012)CrossRefGoogle Scholar
  43. J. Du, L.R. Corrales: ab initio molecular dynamics study of the structure, dynamics, and electronic properties of lithium sisilicate melt and glass, J. Chem. Phys. 125, 114702 (2006)CrossRefGoogle Scholar
  44. G.N. Greaves, A. Fontaine, P. Lagarde, D. Raoux, S.J. Gurman: Local structure of silicate glasses, Nature 293, 611–616 (1981)CrossRefGoogle Scholar
  45. B. Gee, H. Eckert: Cation distribution in mixed alkali silicate glasses. NMR studies by 23Na-{7Li} and 23Na-{7Li} spin echo double resonance, J. Phys. Chem. 100, 3705–3712 (1996)CrossRefGoogle Scholar
  46. C. Chen, J. Du: Lithium ion diffusion mechanism in lithium lanthanum titanate solid-state electrolytes from atomistic simulations, J. Am. Ceram. Soc. 98, 534–542 (2015)CrossRefGoogle Scholar
  47. J. Du, L.R. Corrales: The first sharp diffraction peaks in silicate glasses: Structure and scattering length dependence, Phys. Rev. B 72, 092201 (2005)CrossRefGoogle Scholar
  48. J. Du, L.R. Corrales: Understanding lanthanum aluminate glass structure by correlating molecular dynamics simulation results with neutron and x-ray scattering data, J. Non-Cryst. Solids 353, 210–214 (2007)CrossRefGoogle Scholar
  49. M. Ren, J. Du: Structural origin of the thermal and diffusion behaviors of lithium aluminosilicate crystal polymorphs and glasses, J. Am. Ceram. Soc. 99, 2823–2833 (2016)CrossRefGoogle Scholar
  50. Y. Xiang, J. Du: Effect of strontium substitution on the structure of 45S5 bioglasses, Chem. Mater. 23, 2703–2717 (2011)CrossRefGoogle Scholar
  51. J. Du, J. Rimsza: Atomistic computer simulations of water interactions and dissolution of inorganic glasses, NPJ Mater. Degrad. (2017),  https://doi.org/10.1038/s41529-017-0017-yCrossRefGoogle Scholar
  52. J. Yeon, A.C.T. van Duin: ReaxFF molecular dynamics simulations of hydroxylation kinetics for amorphous and nano-silica structure, and its reactions with strained atomic strain energy, J. Phys. Chem. C 120, 305–317 (2016)CrossRefGoogle Scholar
  53. S. Gin, P. Jollivet, M. Fournier, F. Angeli, P. Frugier, T. Charpentier: Origin and consequences of silicate glass passivation by surface layers, Nat. Commun. 6, 6360 (2015)CrossRefGoogle Scholar
  54. L. Deng, J. Du: Development of effective empirical potentials for molecular dynamics simulations of the structures and properties of boroaluminosilicate glasses, J. Non-Cryst. Solids 453, 177–194 (2016)CrossRefGoogle Scholar
  55. J. Rimsza, J. Du: Ab initio molecular dynamics simulations of the hydroxylation of nanoporous silica, J. Am. Ceram. Soc. 98(12), 3748–3757 (2015)CrossRefGoogle Scholar
  56. A.S. Cote, A.N. Cormack, A. Tilloca: Reactive molecular dynamcis: An effective tool for modeling sol-gel synthesis of bioglasses, J. Mater. Sci. 53, 9006 (2017)CrossRefGoogle Scholar
  57. T.S. Mahadevan, S.H. Garofalini: Dissociative chemisorption of water onto silica and formation of hydronium ions, J. Phys. Chem. C 113, 11177 (2009)CrossRefGoogle Scholar
  58. R.L. McGreevy: Reverse Monte Carlo modeling, J. Phys. 13, R877–R913 (2001)Google Scholar
  59. C. Bonhomme, C. Gervais, N. Folliet, F. Pourpoint, C.C. Diogo, J. Lao, E. Jallot, J. Lacroix, J.-M. Nedelec, D. Iuga, J.V. Hanna, M.E. Smith, Y. Xiang, J. Du, D. Laurencin: 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: Antiosteoporotic pharmaceuticals and bioactive glasses, J. Am. Chem. Soc. 134, 12611–12628 (2012)CrossRefGoogle Scholar
  60. T. Charpentier, M.C. Menziani, A. Pedone: Computational simulations of solid state NMR spectra: A new era in structure determination of oxide glasses, RSC Advances 3, 10550–10578 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Materials Science & EngineeringUniversity of North TexasDenton, TXUSA

Personalised recommendations